1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 06:10:28 +01:00

add ConstraintMatrix

This commit is contained in:
Marek Kaluba 2022-11-07 15:45:18 +01:00
parent bb0354d3a0
commit ecea3dfbcb
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
2 changed files with 130 additions and 0 deletions

View File

@ -12,6 +12,7 @@ using StarAlgebras
using SymbolicWedderburn
include("laplacians.jl")
include("constraint_matrix.jl")
include("sos_sdps.jl")
include("checksolution.jl")

129
src/constraint_matrix.jl Normal file
View File

@ -0,0 +1,129 @@
"""
ConstraintMatrix{T,I} <: AbstractMatrix{T}
Special type of sparse matrix used to store constraints in SOS problems.
This matrix has in general very few non-zero values which also are multiples of each other.
The constructor accepts
* `nzeros` - a vector of non-zero indices; negative values are used to signify
negative values; repetitions are allowed
* `n`, `m` - the size of matrix
* `val` - the greatest common factor of the values
To iterate efficiently over `A::ConstraintMatrix` use [`nzpairs(A)`](@ref).
# Examples
```julia-repl
julia> ConstraintMatrix{Float64}([-1,2,-1,1,4,2,6], 3,2, π)
3×2 ConstraintMatrix{Float64, Int64}:
-3.14159 3.14159
6.28319 0.0
0.0 3.14159
```
"""
struct ConstraintMatrix{T,I} <: AbstractMatrix{T}
pos::Vector{I} # list of positive indices
neg::Vector{I} # list of negative indices
size::Tuple{Int,Int}
val::T
function ConstraintMatrix{T}(nzeros::AbstractArray{<:Integer}, n, m, val) where {T}
@assert n 1
@assert m 1
if !isempty(nzeros)
sort!(nzeros)
a, b = first(nzeros), last(nzeros)
@assert 1 abs(a) n * m
@assert 1 abs(b) n * m
end
k = searchsortedlast(nzeros, 0)
neg = @view nzeros[begin:k]
pos = @view nzeros[k+1:end]
return new{T,eltype(nzeros)}(pos, -neg, (n, m), val)
end
end
ConstraintMatrix(nzeros::AbstractArray{<:Integer}, n, m, val::T) where {T} =
ConstraintMatrix{T}(nzeros, n, m, val)
Base.size(cm::ConstraintMatrix) = cm.size
__get_positive(cm::ConstraintMatrix, idx::Integer) =
convert(eltype(cm), cm.val * length(searchsorted(cm.pos, idx)))
__get_negative(cm::ConstraintMatrix, idx::Integer) =
convert(eltype(cm), cm.val * length(searchsorted(cm.neg, idx)))
Base.@propagate_inbounds function Base.getindex(
cm::ConstraintMatrix,
i::Integer,
j::Integer,
)
li = LinearIndices(cm)
idx = li[i, j]
pos = __get_positive(cm, idx)
neg = __get_negative(cm, idx)
return pos - neg
end
struct NZPairsIter{T}
m::ConstraintMatrix{T}
end
Base.eltype(::Type{NZPairsIter{T}}) where {T} = Pair{Int,T}
Base.IteratorSize(::Type{<:NZPairsIter}) = Base.SizeUnknown()
# TODO: iterate over (idx=>val) pairs combining vals
function Base.iterate(itr::NZPairsIter, state::Tuple{Int,Int}=(1, 1))
k = iterate(itr.m.pos, state[1])
isnothing(k) && return iterate(itr, state[2])
idx, st = k
return idx => itr.m.val, (st, 1)
end
function Base.iterate(itr::NZPairsIter, state::Int)
k = iterate(itr.m.neg, state[1])
isnothing(k) && return nothing
idx, st = k
return idx => -itr.m.val, st
end
"""
nzpairs(cm::ConstraintMatrix)
Efficiently iterate over non-zero `(idx=>value)` pairs.
If the `cm` was created with repetitions (or contains negative values) there will
be repetitions in the returned sequence of pairs.
# Examples
```julia
julia> ConstraintMatrix{Float64}([-1,2,-1,1,4,2,6], 3,2, π)
3×2 ConstraintMatrix{Float64, Int64}:
-3.14159 3.14159
6.28319 0.0
0.0 3.14159
julia> collect(nzpairs(M))
7-element Vector{Pair{Int64, Float64}}:
1 => 3.141592653589793
2 => 3.141592653589793
2 => 3.141592653589793
4 => 3.141592653589793
6 => 3.141592653589793
1 => -3.141592653589793
1 => -3.141592653589793
```
"""
nzpairs(cm::ConstraintMatrix) = NZPairsIter(cm)
function LinearAlgebra.dot(cm::ConstraintMatrix, m::AbstractMatrix{T}) where {T}
if isempty(cm.pos) && isempty(cm.neg)
isempty(m) && return zero(T)
return zero(first(m) + first(m))
end
pos = isempty(cm.pos) ? zero(first(m)) : sum(@view m[cm.pos])
neg = isempty(cm.neg) ? zero(first(m)) : sum(@view m[cm.neg])
return convert(eltype(cm), cm.val) * (pos - neg)
end