1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-12-24 02:00:30 +01:00

remove unnecessary function arguments annotations

This commit is contained in:
kalmar 2017-01-16 21:25:14 +01:00
parent c1bd866dd4
commit f04cd75d73

View File

@ -13,7 +13,6 @@ const N = 4
const VERBOSE = true
function permutation_matrix(p::Vector{Int})
n = length(p)
sort(p) == collect(1:n) || throw(ArgumentError("Input array must be a permutation of 1:n"))
@ -21,18 +20,18 @@ function permutation_matrix(p::Vector{Int})
return A[p,:]
end
SymmetricGroup(n::Int) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
# const SymmetricGroup = [permutation_matrix(x) for x in SymmetricGroup_perms]
function E(i::Int, j::Int; dim::Int=N)
function E(i, j; dim::Int=N)
@assert i≠j
k = eye(dim)
k[i,j] = 1
return k
end
function eltary_basis_vector(i::Int; dim::Int=N)
function eltary_basis_vector(i; dim::Int=N)
result = zeros(dim)
if 0 < i dim
result[i] = 1
@ -40,12 +39,12 @@ function eltary_basis_vector(i::Int; dim::Int=N)
return result
end
v(i::Int; dim=N) = eltary_basis_vector(i,dim=dim)
v(i; dim=N) = eltary_basis_vector(i,dim=dim)
ϱ(i::Int,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), v(j,dim=n))
λ(i::Int,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), -v(j,dim=n))
ϱ(i,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), v(j,dim=n))
λ(i,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), -v(j,dim=n))
function ɛ(i::Int, n::Int=N)
function ɛ(i, n::Int=N)
result = eye(n)
result[i,i] = -1
return SemiDirectProductElement(result)
@ -54,7 +53,9 @@ end
σ(permutation::Vector{Int}) =
SemiDirectProductElement(permutation_matrix(permutation))
function AutF_generating_set(n::Int=N)
# Standard generating set: 103 elements
function generatingset_ofAutF(n::Int=N)
indexing = [[i,j] for i in 1:n for j in 1:n if i≠j]
ϱs = [ϱ(ij...) for ij in indexing]
λs = [λ(ij...) for ij in indexing]
@ -67,7 +68,7 @@ end
const ID = eye(N+1)
const S₁ = AutF_generating_set(N)
const S₁ = generatingset_ofAutF(N)
matrix_S₁ = [matrix_repr(x) for x in S₁]