1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2025-01-13 14:47:34 +01:00

add/update scripts for SLNZ/SpNZ

This commit is contained in:
Marek Kaluba 2023-05-30 16:35:55 +02:00
parent cd7901b455
commit f4936dd50a
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
3 changed files with 189 additions and 9 deletions

94
scripts/SLNZ_has_T.jl Normal file
View File

@ -0,0 +1,94 @@
using LinearAlgebra
using MKL_jll
BLAS.set_num_threads(4)
ENV["OMP_NUM_THREADS"] = 4
using Groups
import Groups.MatrixGroups
include(joinpath(@__DIR__, "../test/optimizers.jl"))
using PropertyT
using PropertyT.SymbolicWedderburn
using PropertyT.PermutationGroups
using PropertyT.StarAlgebras
include(joinpath(@__DIR__, "argparse.jl"))
const N = parsed_args["N"]
const HALFRADIUS = parsed_args["halfradius"]
const UPPER_BOUND = parsed_args["upper_bound"]
G = MatrixGroups.SpecialLinearGroup{N}(Int8)
@info "Running Δ² - λ·Δ sum of squares decomposition for " G
@info "computing group algebra structure"
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
@info "computing WedderburnDecomposition"
wd = let RG = RG, N = N
G = StarAlgebras.object(RG)
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wdfl = @time SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
)
end
@info wd
Δ = RG(length(S)) - sum(RG(s) for s in S)
elt = Δ^2
unit = Δ
warm = nothing
@info "defining optimization problem"
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd;
upper_bound = UPPER_BOUND,
augmented = true,
)
begin
@time status, warm = PropertyT.solve(
model,
scs_optimizer(;
linear_solver = SCS.MKLDirectSolver,
eps = 1e-10,
max_iters = 20_000,
accel = 50,
alpha = 1.95,
),
warm,
)
@info "reconstructing the solution"
Q = @time let wd = wd, Ps = [JuMP.value.(P) for P in varP]
Qs = real.(sqrt.(Ps))
PropertyT.reconstruct(Qs, wd)
end
@info "certifying the solution"
@time certified, λ = PropertyT.certify_solution(
elt,
unit,
JuMP.objective_value(model),
Q;
halfradius = HALFRADIUS,
augmented = true,
)
end
if certified && λ > 0
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
else
@info "Could NOT certify the result:" certified λ
end

83
scripts/SpNZ_has_T.jl Normal file
View File

@ -0,0 +1,83 @@
using LinearAlgebra
using MKL_jll
BLAS.set_num_threads(4)
ENV["OMP_NUM_THREADS"] = 4
using Groups
import Groups.MatrixGroups
include(joinpath(@__DIR__, "../test/optimizers.jl"))
using PropertyT
using PropertyT.SymbolicWedderburn
using PropertyT.PermutationGroups
using PropertyT.StarAlgebras
include(joinpath(@__DIR__, "argparse.jl"))
include(joinpath(@__DIR__, "utils.jl"))
const N = parsed_args["N"]
const HALFRADIUS = parsed_args["halfradius"]
const UPPER_BOUND = parsed_args["upper_bound"]
const GENUS = 2N
G = MatrixGroups.SymplecticGroup{GENUS}(Int8)
@info "Running Δ² - λ·Δ sum of squares decomposition for " G
@info "computing group algebra structure"
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
@info "computing WedderburnDecomposition"
wd = let RG = RG, N = N
G = StarAlgebras.object(RG)
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wdfl = @time SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
)
end
@info wd
Δ = RG(length(S)) - sum(RG(s) for s in S)
elt = Δ^2
unit = Δ
@info "defining optimization problem"
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd;
upper_bound = UPPER_BOUND,
augmented = true,
show_progress = true,
)
solve_in_loop(
model,
wd,
varP;
logdir = "./log/Sp($N,Z)/r=$HALFRADIUS/Δ²-$(UPPER_BOUND)Δ",
optimizer = scs_optimizer(;
linear_solver = SCS.MKLDirectSolver,
eps = 1e-10,
max_iters = 50_000,
accel = 50,
alpha = 1.95,
),
data = (elt = elt, unit = unit, halfradius = HALFRADIUS),
)
if certified && λ > 0
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
else
@info "Could NOT certify the result:" certified λ
end

View File

@ -39,13 +39,14 @@ function solve_in_loop(model::JuMP.Model, args...; logdir, optimizer, data)
nothing
end
old_lambda = 0.0
certified = false
while status != JuMP.OPTIMAL
date = now()
log_file = joinpath(logdir, "solver_$date.log")
@info "Current logfile is $log_file."
isdir(dirname(log_file)) || mkpath(dirname(log_file))
λ, flag, certified_λ = let
certified, certified_λ = let
# logstream = current_logger().logger.stream
# v = @ccall setvbuf(logstream.handle::Ptr{Cvoid}, C_NULL::Ptr{Cvoid}, 1::Cint, 0::Cint)::Cint
# @warn v
@ -58,7 +59,7 @@ function solve_in_loop(model::JuMP.Model, args...; logdir, optimizer, data)
solution[:warm] = warm
flag, λ_cert = open(log_file; append = true) do io
certified, λ_cert = open(log_file; append = true) do io
with_logger(SimpleLogger(io)) do
return PropertyT.certify_solution(
data.elt,
@ -70,25 +71,27 @@ function solve_in_loop(model::JuMP.Model, args...; logdir, optimizer, data)
end
end
solution[], flag, λ_cert
certified, λ_cert
end
if flag == true && certified_λ 0
if certified == true
@info "Certification done with λ = $certified_λ" certified_λ status
return certified_λ
end
if status == JuMP.OPTIMAL
return certified, certified_λ
else
rel_change =
abs(certified_λ - old_lambda) /
(abs(certified_λ) + abs(old_lambda))
@info "Certification failed with λ = " certified_λ rel_change status
@info "Relatie improement for λ" rel_change
if rel_change < 1e-9
@info "No progress detected, breaking" certified_λ rel_change status
break
return certified, certified_λ
end
end
old_lambda = certified_λ
end
return status == JuMP.OPTIMAL ? old_lambda : NaN
return certified, old_lambda
end