1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-12-25 02:15:29 +01:00

much faster WreathProductElem actions

This commit is contained in:
kalmarek 2019-06-25 17:37:08 +02:00
parent 4cef591dfa
commit f4f9dfe21d
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

View File

@ -225,39 +225,31 @@ end
function matrix_emb(n::DirectPowerGroupElem, p::perm)
Id = parent(n.elts[1])()
elt = Diagonal([(-1)^(el == Id ? 0 : 1) for el in n.elts])
elt = Diagonal([(el == Id ? 1 : -1) for el in n.elts])
return elt[:, p.d]
end
function (g::WreathProductElem)(A::MatElem)
g_inv = inv(g)
G = matrix_emb(g.n, g_inv.p)
G_inv = matrix_emb(g_inv.n, g.p)
M = parent(A)
return M(G)*A*M(G_inv)
end
import Base.*
@doc doc"""
*(x::AbstractAlgebra.MatElem, P::Generic.perm)
> Apply the pemutation $P$ to the rows of the matrix $x$ and return the result.
"""
function *(x::AbstractAlgebra.MatElem, P::Generic.perm)
z = similar(x)
m = nrows(x)
n = ncols(x)
for i = 1:m
for j = 1:n
z[i, j] = x[i,P[j]]
end
end
return z
function (g::WreathProductElem{N})(A::MatElem) where N
# @assert N == size(A,1) == size(A,2)
flips = ntuple(i->(g.n[i].d[1]==1 && g.n[i].d[2]==2 ? 1 : -1), N)
result = similar(A)
@inbounds for i = 1:size(A,1)
for j = 1:size(A,2)
result[i, j] = A[g.p[i], g.p[j]]*(flips[i]*flips[j])
end
end
return result
end
function (p::perm)(A::MatElem)
length(p.d) == A.r == A.c || throw("Can't act via $p on matrix of size ($(A.r), $(A.c))")
return p*A*inv(p)
length(p.d) == size(A, 1) == size(A,2) || throw("Can't act via $p on matrix of size $(size(A))")
result = similar(A)
@inbounds for i in 1:size(A, 1)
for j in 1:size(A, 2)
result[p[i],p[j]] = A[i,j] # action by permuting rows and colums/conjugation
end
end
return result
end
###############################################################################