mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2025-01-12 22:42:33 +01:00
update SL(3,Z) to recent interface
This commit is contained in:
parent
b0678e0482
commit
f89dd7641c
108
SL(3,Z).jl
108
SL(3,Z).jl
@ -1,3 +1,12 @@
|
||||
using JLD
|
||||
using JuMP
|
||||
import SCS: SCSSolver
|
||||
import Mosek: MosekSolver
|
||||
|
||||
using Groups
|
||||
using ProgressMeter
|
||||
|
||||
|
||||
function SL₃ℤ_generatingset()
|
||||
|
||||
function E(i::Int, j::Int, N::Int=3)
|
||||
@ -13,41 +22,43 @@ function SL₃ℤ_generatingset()
|
||||
return S
|
||||
end
|
||||
|
||||
function generate_B₂_and_B₄(B₁)
|
||||
function prepare_Δ_sdp_constraints(identity, S)
|
||||
@show length(S)
|
||||
|
||||
B₁ = vcat([identity], S)
|
||||
B₂ = products(B₁, B₁);
|
||||
B₃ = products(B₁, B₂);
|
||||
B₄ = products(B₁, B₃);
|
||||
|
||||
@assert B₄[1:length(B₂)] == B₂
|
||||
return B₂, B₄;
|
||||
end
|
||||
|
||||
function prepare_Laplacian_and_constraints(S, identity)
|
||||
|
||||
B₂, B₄ = generate_B₂_and_B₄(vcat([identity], S))
|
||||
product_matrix = create_product_matrix(B₄,length(B₂));
|
||||
sdp_constraints = constraints_from_pm(product_matrix, length(B₄))
|
||||
L_coeff = splaplacian_coeff(S, B₄);
|
||||
L_coeff = splaplacian_coeff(S, B₂, length(B₄));
|
||||
Δ = GroupAlgebraElement(L_coeff, product_matrix)
|
||||
|
||||
return GroupAlgebraElement(L_coeff, product_matrix), sdp_constraints
|
||||
return Δ, sdp_constraints
|
||||
end
|
||||
|
||||
function prepare_Δ_sdp_constraints(name::String;cached=true)
|
||||
f₁ = isfile("$name.product_matrix")
|
||||
f₂ = isfile("$name.delta.coefficients")
|
||||
function load_Δ_sdp_constraints(name::String;cached=true)
|
||||
pm_filename = "$name.product_matrix.jld"
|
||||
Δ_coeff_filename = "$name.delta.coefficients.jld"
|
||||
f₁ = isfile(pm_filename)
|
||||
f₂ = isfile(Δ_coeff_filename)
|
||||
if cached && f₁ && f₂
|
||||
println("Loading precomputed pm, Δ, sdp_constraints...")
|
||||
product_matrix = readdlm("$name.product_matrix", Int)
|
||||
L = readdlm("$name.delta.coefficients")[:, 1]
|
||||
Δ = GroupAlgebraElement(L, product_matrix)
|
||||
product_matrix = load(pm_filename, "pm")
|
||||
L = load(Δ_coeff_filename, "Δ")[:, 1]
|
||||
Δ = GroupAlgebraElement(L, Array{Int,2}(product_matrix))
|
||||
sdp_constraints = constraints_from_pm(product_matrix)
|
||||
else
|
||||
println("Computing pm, Δ, sdp_constraints...")
|
||||
ID = eye(Int, 3)
|
||||
S₁ = SL₃ℤ_generatingset()
|
||||
Δ, sdp_constraints = prepare_Laplacian_and_constraints(S₁, ID)
|
||||
writedlm("$name.delta.coefficients", Δ.coefficients)
|
||||
writedlm("$name.product_matrix", Δ.product_matrix)
|
||||
S = SL₃ℤ_generatingset()
|
||||
Δ, sdp_constraints = prepare_Δ_sdp_constraints(ID, S)
|
||||
|
||||
save(pm_filename, "pm", Δ.product_matrix)
|
||||
save(Δ_coeff_filename, "Δ", Δ.coefficients)
|
||||
|
||||
end
|
||||
return Δ, sdp_constraints
|
||||
end
|
||||
@ -55,10 +66,10 @@ end
|
||||
|
||||
function compute_κ_A(name::String, Δ, sdp_constraints;
|
||||
cached = true,
|
||||
tol = TOL,
|
||||
verbose = VERBOSE,
|
||||
solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose))
|
||||
# solver = SCSSolver(eps=TOL, max_iters=ITERATIONS, verbose=VERBOSE))
|
||||
tol = 1e-7,
|
||||
verbose = false,
|
||||
# solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose))
|
||||
solver = SCSSolver(eps=tol, max_iters=20000, cg_rate=3, verbose=verbose))
|
||||
|
||||
f₁ = isfile("$name.kappa")
|
||||
f₂ = isfile("$name.SDPmatrixA")
|
||||
@ -70,31 +81,42 @@ function compute_κ_A(name::String, Δ, sdp_constraints;
|
||||
else
|
||||
println("Solving SDP problem maximizing κ...")
|
||||
κ, A = solve_SDP(sdp_constraints, Δ, solver, verbose=verbose)
|
||||
writedlm("$name.kappa", kappa)
|
||||
writedlm("$name.SDPmatrixA", A)
|
||||
# writedlm("$name.kappa", kappa)
|
||||
# writedlm("$name.SDPmatrixA", A)
|
||||
end
|
||||
return κ, A
|
||||
end
|
||||
|
||||
function main()
|
||||
const NAME = "SL3Z"
|
||||
const VERBOSE = true
|
||||
const TOL=1e-7
|
||||
const Δ, sdp_constraints = load_Δ_sdp_constraints(NAME)
|
||||
const κ, A = compute_κ_A(NAME, Δ, sdp_constraints, cached=false, verbose=VERBOSE)
|
||||
|
||||
if maximum(A) < 1e-2
|
||||
warn("Solver might not solved the problem successfully and the positive solution is due to floating-point error, proceeding anyway...")
|
||||
end
|
||||
|
||||
if κ > 0
|
||||
@assert A == Symmetric(A)
|
||||
const A_sqrt = real(sqrtm(A))
|
||||
|
||||
T = ℚ_distance_to_positive_cone(Δ, κ, A, tol=TOL, verbose=VERBOSE)
|
||||
|
||||
if T < 0
|
||||
println("$NAME HAS property (T)!")
|
||||
else
|
||||
println("$NAME may NOT HAVE property (T)!")
|
||||
end
|
||||
|
||||
else
|
||||
println("$κ < 0: $NAME may NOT HAVE property (T)!")
|
||||
end
|
||||
end
|
||||
|
||||
@everywhere push!(LOAD_PATH, "./")
|
||||
using GroupAlgebras
|
||||
@everywhere include("property(T).jl")
|
||||
|
||||
const NAME = "SL3Z"
|
||||
const VERBOSE = true
|
||||
const TOL=1e-7
|
||||
const Δ, sdp_constraints = prepare_Δ_sdp_constraints(NAME)
|
||||
const κ, A = compute_κ_A(NAME, Δ, sdp_constraints)
|
||||
|
||||
if κ > 0
|
||||
@time T = ℚ_distance_to_positive_cone(Δ, κ, A, tol=TOL, verbose=VERBOSE)
|
||||
|
||||
if T < 0
|
||||
println("$NAME HAS property (T)!")
|
||||
else
|
||||
println("$NAME may NOT HAVE property (T)!")
|
||||
end
|
||||
|
||||
else
|
||||
println("$κ < 0: $NAME may NOT HAVE property (T)!")
|
||||
end
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user