1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2025-01-12 22:42:33 +01:00

update SL(3,Z) to recent interface

This commit is contained in:
kalmar 2017-02-26 13:47:26 +01:00
parent b0678e0482
commit f89dd7641c

View File

@ -1,3 +1,12 @@
using JLD
using JuMP
import SCS: SCSSolver
import Mosek: MosekSolver
using Groups
using ProgressMeter
function SL₃_generatingset()
function E(i::Int, j::Int, N::Int=3)
@ -13,41 +22,43 @@ function SL₃_generatingset()
return S
end
function generate_B₂_and_B₄(B₁)
function prepare_Δ_sdp_constraints(identity, S)
@show length(S)
B₁ = vcat([identity], S)
B₂ = products(B₁, B₁);
B₃ = products(B₁, B₂);
B₄ = products(B₁, B₃);
@assert B₄[1:length(B₂)] == B₂
return B₂, B₄;
end
function prepare_Laplacian_and_constraints(S, identity)
B₂, B₄ = generate_B₂_and_B₄(vcat([identity], S))
product_matrix = create_product_matrix(B₄,length(B₂));
sdp_constraints = constraints_from_pm(product_matrix, length(B₄))
L_coeff = splaplacian_coeff(S, B₄);
L_coeff = splaplacian_coeff(S, B₂, length(B₄));
Δ = GroupAlgebraElement(L_coeff, product_matrix)
return GroupAlgebraElement(L_coeff, product_matrix), sdp_constraints
return Δ, sdp_constraints
end
function prepare_Δ_sdp_constraints(name::String;cached=true)
f₁ = isfile("$name.product_matrix")
f₂ = isfile("$name.delta.coefficients")
function load_Δ_sdp_constraints(name::String;cached=true)
pm_filename = "$name.product_matrix.jld"
Δ_coeff_filename = "$name.delta.coefficients.jld"
f₁ = isfile(pm_filename)
f₂ = isfile(Δ_coeff_filename)
if cached && f₁ && f₂
println("Loading precomputed pm, Δ, sdp_constraints...")
product_matrix = readdlm("$name.product_matrix", Int)
L = readdlm("$name.delta.coefficients")[:, 1]
Δ = GroupAlgebraElement(L, product_matrix)
product_matrix = load(pm_filename, "pm")
L = load(Δ_coeff_filename, "Δ")[:, 1]
Δ = GroupAlgebraElement(L, Array{Int,2}(product_matrix))
sdp_constraints = constraints_from_pm(product_matrix)
else
println("Computing pm, Δ, sdp_constraints...")
ID = eye(Int, 3)
S₁ = SL₃_generatingset()
Δ, sdp_constraints = prepare_Laplacian_and_constraints(S₁, ID)
writedlm("$name.delta.coefficients", Δ.coefficients)
writedlm("$name.product_matrix", Δ.product_matrix)
S = SL₃_generatingset()
Δ, sdp_constraints = prepare_Δ_sdp_constraints(ID, S)
save(pm_filename, "pm", Δ.product_matrix)
save(Δ_coeff_filename, "Δ", Δ.coefficients)
end
return Δ, sdp_constraints
end
@ -55,10 +66,10 @@ end
function compute_κ_A(name::String, Δ, sdp_constraints;
cached = true,
tol = TOL,
verbose = VERBOSE,
solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose))
# solver = SCSSolver(eps=TOL, max_iters=ITERATIONS, verbose=VERBOSE))
tol = 1e-7,
verbose = false,
# solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose))
solver = SCSSolver(eps=tol, max_iters=20000, cg_rate=3, verbose=verbose))
f₁ = isfile("$name.kappa")
f₂ = isfile("$name.SDPmatrixA")
@ -70,31 +81,42 @@ function compute_κ_A(name::String, Δ, sdp_constraints;
else
println("Solving SDP problem maximizing κ...")
κ, A = solve_SDP(sdp_constraints, Δ, solver, verbose=verbose)
writedlm("$name.kappa", kappa)
writedlm("$name.SDPmatrixA", A)
# writedlm("$name.kappa", kappa)
# writedlm("$name.SDPmatrixA", A)
end
return κ, A
end
function main()
const NAME = "SL3Z"
const VERBOSE = true
const TOL=1e-7
const Δ, sdp_constraints = load_Δ_sdp_constraints(NAME)
const κ, A = compute_κ_A(NAME, Δ, sdp_constraints, cached=false, verbose=VERBOSE)
if maximum(A) < 1e-2
warn("Solver might not solved the problem successfully and the positive solution is due to floating-point error, proceeding anyway...")
end
if κ > 0
@assert A == Symmetric(A)
const A_sqrt = real(sqrtm(A))
T = _distance_to_positive_cone(Δ, κ, A, tol=TOL, verbose=VERBOSE)
if T < 0
println("$NAME HAS property (T)!")
else
println("$NAME may NOT HAVE property (T)!")
end
else
println(" < 0: $NAME may NOT HAVE property (T)!")
end
end
@everywhere push!(LOAD_PATH, "./")
using GroupAlgebras
@everywhere include("property(T).jl")
const NAME = "SL3Z"
const VERBOSE = true
const TOL=1e-7
const Δ, sdp_constraints = prepare_Δ_sdp_constraints(NAME)
const κ, A = compute_κ_A(NAME, Δ, sdp_constraints)
if κ > 0
@time T = _distance_to_positive_cone(Δ, κ, A, tol=TOL, verbose=VERBOSE)
if T < 0
println("$NAME HAS property (T)!")
else
println("$NAME may NOT HAVE property (T)!")
end
else
println(" < 0: $NAME may NOT HAVE property (T)!")
end
main()