############################################################################### # # OrbitData # ############################################################################### struct OrbitData{T<:AbstractArray{Float64, 2}, GEl<:GroupElem, P<:perm} orbits::Vector{Vector{Int}} preps::Dict{GEl, P} Uπs::Vector{T} dims::Vector{Int} end function OrbitData(RG::GroupRing, autS::Group) orbs = orbit_decomposition(autS, RG.basis, RG.basis_dict) @assert sum(length(o) for o in orbs) == length(RG.basis) autS_mps = Projections.rankOne_projections(GroupRing(autS)) preps = perm_reps(autS, RG.basis[1:size(RG.pm,1)], RG.basis_dict) mreps = matrix_reps(preps) Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps] multiplicities = size.(Uπs,2) dimensions = [Int(p[autS()]*Int(order(autS))) for p in autS_mps] @assert dot(multiplicities, dimensions) == size(RG.pm,1) nzros = [i for i in 1:length(Uπs) if size(Uπs[i],2) !=0] return OrbitData(orbs, preps, Uπs[nzros], dims[nzros]) end function compute_OrbitData(RG::GroupRing, autS::Group) info("Decomposing E into orbits of $(autS)") @time orbs = orbit_decomposition(autS, RG.basis, RG.basis_dict) @assert sum(length(o) for o in orbs) == length(RG.basis) info("E consists of $(length(orbs)) orbits!") info("Action matrices") @time preps = perm_reps(autS, RG.basis[1:size(RG.pm,1)], RG.basis_dict) mreps = matrix_reps(preps) info("Projections") @time autS_mps = Projections.rankOne_projections(GroupRing(autS)); info("Uπs...") @time Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps] multiplicities = size.(Uπs,2) info("multiplicities = $multiplicities") dimensions = [Int(p[autS()]*Int(order(autS))) for p in autS_mps]; info("dimensions = $dimensions") @assert dot(multiplicities, dimensions) == size(RG.pm,1) return OrbitData(orbs, preps, Uπs, dimensions) end function decimate(od::OrbitData) nzros = [i for i in 1:length(od.Uπs) if size(od.Uπs[i],2) !=0] Us = map(x -> PropertyT.sparsify!(x, eps(Float64)*1e3, verbose=true), od.Uπs[nzros]) #dimensions of the corresponding πs: dims = od.dims[nzros] return OrbitData(od.orbits, od.preps, full.(Us), dims); end function save_OrbitData(sett::Settings, data::OrbitData) save_preps(filename(prepath(sett), :preps), data.preps) save(filename(prepath(sett), :orbits), "orbits", data.orbits) save(filename(prepath(sett), :Uπs), "Uπs", data.Uπs, "dims", data.dims) end function load_OrbitData(sett::Settings) info("Loading Uπs, dims, orbits...") Uπs = load(filename(prepath(sett), :Uπs), "Uπs") nzros = [i for i in 1:length(Uπs) if size(Uπs[i],2) !=0] Uπs = map(x -> sparsify!(x, sett.tol/100, verbose=true), Uπs) #dimensions of the corresponding πs: dims = load(filename(prepath(sett), :Uπs), "dims") orbits = load(filename(prepath(sett), :orbits), "orbits") preps = load_preps(filename(prepath(sett), :preps), sett.autS) return OrbitData(orbits, preps, Uπs, dims) end function load_preps(fname::String, G::Group) lded_preps = load(fname, "perms_d") permG = PermutationGroup(length(first(lded_preps))) @assert length(lded_preps) == order(G) return Dict(k=>permG(v) for (k,v) in zip(elements(G), lded_preps)) end function save_preps(fname::String, preps) autS = parent(first(keys(preps))) save(fname, "perms_d", [preps[elt].d for elt in elements(autS)]) end function orthSVD(M::AbstractMatrix{T}) where {T<:AbstractFloat} M = full(M) fact = svdfact(M) M_rank = sum(fact[:S] .> maximum(size(M))*eps(T)) return fact[:U][:,1:M_rank] end function orbit_decomposition(G::Group, E::Vector, rdict=GroupRings.reverse_dict(E)) elts = collect(elements(G)) tovisit = trues(E); orbits = Vector{Vector{Int}}() orbit = zeros(Int, length(elts)) for i in 1:endof(E) if tovisit[i] g = E[i] Threads.@threads for j in 1:length(elts) orbit[j] = rdict[elts[j](g)] end tovisit[orbit] = false push!(orbits, unique(orbit)) end end return orbits end ############################################################################### # # Sparsification # ############################################################################### dens(M::SparseMatrixCSC) = nnz(M)/length(M) dens(M::AbstractArray) = countnz(M)/length(M) function sparsify!{Tv,Ti}(M::SparseMatrixCSC{Tv,Ti}, eps=eps(Tv); verbose=false) densM = dens(M) for i in eachindex(M.nzval) if abs(M.nzval[i]) < eps M.nzval[i] = zero(Tv) end end dropzeros!(M) if verbose info("Sparsified density:", rpad(densM, 20), " → ", rpad(dens(M), 20), " ($(nnz(M)) non-zeros)") end return M end function sparsify!{T}(M::AbstractArray{T}, eps=eps(T); verbose=false) densM = dens(M) if verbose info("Sparsifying $(size(M))-matrix... ") end for n in eachindex(M) if abs(M[n]) < eps M[n] = zero(T) end end if verbose info("$(rpad(densM, 20)) → $(rpad(dens(M),20))), ($(countnz(M)) non-zeros)") end return sparse(M) end sparsify{T}(U::AbstractArray{T}, tol=eps(T); verbose=false) = sparsify!(deepcopy(U), tol, verbose=verbose) ############################################################################### # # perm-, matrix-, representations # ############################################################################### function perm_repr(g::GroupElem, E::Vector, E_dict) p = Vector{Int}(length(E)) for (i,elt) in enumerate(E) p[i] = E_dict[g(elt)] end return p end function perm_reps(G::Group, E::Vector, E_rdict=GroupRings.reverse_dict(E)) elts = collect(elements(G)) l = length(elts) preps = Vector{perm}(l) permG = PermutationGroup(length(E)) Threads.@threads for i in 1:l preps[i] = permG(PropertyT.perm_repr(elts[i], E, E_rdict), false) end return Dict(elts[i]=>preps[i] for i in 1:l) end function matrix_repr(x::GroupRingElem, mreps::Dict) nzeros = findn(x.coeffs) return sum(x[i].*mreps[parent(x).basis[i]] for i in nzeros) end function matrix_reps(preps::Dict{T,perm{I}}) where {T<:GroupElem, I<:Integer} kk = collect(keys(preps)) mreps = Vector{SparseMatrixCSC{Float64, Int}}(length(kk)) Threads.@threads for i in 1:length(kk) mreps[i] = AbstractAlgebra.matrix_repr(preps[kk[i]]) end return Dict(kk[i] => mreps[i] for i in 1:length(kk)) end