using Test using AbstractAlgebra, Nemo, Groups, SCS using PropertyT # write your own tests here indexing(n) = [(i,j) for i in 1:n for j in (i+1):n] function Groups.gens(M::MatSpace) @assert M.cols == M.rows N = M.cols E(i,j) = begin g = M(1); g[i,j] = 1; g end S = [E(i,j) for (i,j) in indexing(N)] S = [S; transpose.(S)] S = [S; inv.(S)] return S end solver(iters; accel=1) = SCSSolver(max_iters=iters, acceleration_lookback=accel, eps=1e-10) @testset "SL(2,Z)" begin N = 2 G = MatrixSpace(Nemo.ZZ, N,N) S = Groups.gens(G) sett = PropertyT.Settings("SL($N,Z)", G, S, solver(20000, accel=20); upper_bound=0.1) @test PropertyT.check_property_T(sett) == false end @testset "SL(3,Z)" begin N = 3 G = MatrixSpace(Nemo.ZZ, N,N) S = Groups.gens(G) sett = PropertyT.Settings("SL($N,Z)", G, S, solver(1000, accel=20); upper_bound=0.1) @test PropertyT.check_property_T(sett) == true end @testset "oSL(3,Z)" begin N = 3 G = MatrixSpace(Nemo.ZZ, N,N) S = Groups.gens(G) autS = WreathProduct(PermGroup(2), PermGroup(N)) sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(1000, accel=20); upper_bound=0.27, warmstart=false) @test PropertyT.check_property_T(sett) == false #second run just checks the solution @test PropertyT.check_property_T(sett) == false sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(1000, accel=20); upper_bound=0.27, warmstart=true) @test PropertyT.check_property_T(sett) == true end @testset "SAut(F₂)" begin N = 2 G = SAut(FreeGroup(N)) S = Groups.gens(G) S = [S; inv.(S)] sett = PropertyT.Settings("SAut(F$N)", G, S, solver(20000, accel=20); upper_bound=0.15, warmstart=false) @test PropertyT.check_property_T(sett) == false end @testset "SAut(F₂)" begin N = 3 G = SAut(FreeGroup(N)) S = Groups.gens(G) S = [S; inv.(S)] autS = WreathProduct(PermGroup(2), PermGroup(N)) sett = PropertyT.Settings("SAut(F$N)", G, S, autS, solver(20000); upper_bound=0.15, warmstart=false) @test PropertyT.check_property_T(sett) == false end