using JLD using JuMP import SCS: SCSSolver import Mosek: MosekSolver using Groups using ProgressMeter function SL₃ℤ_generatingset() function E(i::Int, j::Int, N::Int=3) @assert i≠j k = eye(N) k[i,j] = 1 return k end S = [E(1,2), E(1,3), E(2,3)]; S = vcat(S, [x' for x in S]); S = vcat(S, [inv(x) for x in S]); return S end function prepare_Δ_sdp_constraints(identity, S) @show length(S) B₁ = vcat([identity], S) B₂ = products(B₁, B₁); B₃ = products(B₁, B₂); B₄ = products(B₁, B₃); @assert B₄[1:length(B₂)] == B₂ product_matrix = create_product_matrix(B₄,length(B₂)); sdp_constraints = constraints_from_pm(product_matrix, length(B₄)) L_coeff = splaplacian_coeff(S, B₂, length(B₄)); Δ = GroupAlgebraElement(L_coeff, product_matrix) return Δ, sdp_constraints end function load_Δ_sdp_constraints(name::String;cached=true) pm_filename = "$name.product_matrix.jld" Δ_coeff_filename = "$name.delta.coefficients.jld" f₁ = isfile(pm_filename) f₂ = isfile(Δ_coeff_filename) if cached && f₁ && f₂ println("Loading precomputed pm, Δ, sdp_constraints...") product_matrix = load(pm_filename, "pm") L = load(Δ_coeff_filename, "Δ")[:, 1] Δ = GroupAlgebraElement(L, Array{Int,2}(product_matrix)) sdp_constraints = constraints_from_pm(product_matrix) else println("Computing pm, Δ, sdp_constraints...") ID = eye(Int, 3) S = SL₃ℤ_generatingset() Δ, sdp_constraints = prepare_Δ_sdp_constraints(ID, S) save(pm_filename, "pm", Δ.product_matrix) save(Δ_coeff_filename, "Δ", Δ.coefficients) end return Δ, sdp_constraints end function compute_κ_A(name::String, Δ, sdp_constraints; cached = true, tol = 1e-7, verbose = false, # solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose)) solver = SCSSolver(eps=tol, max_iters=20000, cg_rate=3, verbose=verbose)) f₁ = isfile("$name.kappa") f₂ = isfile("$name.SDPmatrixA") if cached && f₁ && f₂ println("Loading precomputed κ, A...") A = readdlm("$name.SDPmatrixA") κ = readdlm("$name.kappa")[1] else println("Solving SDP problem maximizing κ...") κ, A = solve_SDP(sdp_constraints, Δ, solver, verbose=verbose) # writedlm("$name.kappa", kappa) # writedlm("$name.SDPmatrixA", A) end return κ, A end function main() const NAME = "SL3Z" const VERBOSE = true const TOL=1e-7 const Δ, sdp_constraints = load_Δ_sdp_constraints(NAME) const κ, A = compute_κ_A(NAME, Δ, sdp_constraints, cached=false, verbose=VERBOSE) if maximum(A) < 1e-2 warn("Solver might not solved the problem successfully and the positive solution is due to floating-point error, proceeding anyway...") end if κ > 0 @assert A == Symmetric(A) const A_sqrt = real(sqrtm(A)) T = ℚ_distance_to_positive_cone(Δ, κ, A, tol=TOL, verbose=VERBOSE) if T < 0 println("$NAME HAS property (T)!") else println("$NAME may NOT HAVE property (T)!") end else println("$κ < 0: $NAME may NOT HAVE property (T)!") end end @everywhere push!(LOAD_PATH, "./") using GroupAlgebras @everywhere include("property(T).jl") main()