############################################################################### # # OrbitData # ############################################################################### struct OrbitData{T<:AbstractArray{Float64, 2}, GEl<:GroupElem, P<:perm} orbits::Vector{Vector{Int}} preps::Dict{GEl, P} Uπs::Vector{T} dims::Vector{Int} end function OrbitData(RG::GroupRing, autS::Group, verbose=true) verbose && @info "Decomposing basis of RG into orbits of" autS @time orbs = orbit_decomposition(autS, RG.basis, RG.basis_dict) @assert sum(length(o) for o in orbs) == length(RG.basis) verbose && @info "The action has $(length(orbs)) orbits" verbose && @info "Finding projections in the Group Ring of" autS @time autS_mps = Projections.rankOne_projections(GroupRing(autS, collect(autS))) verbose && @info "Finding AutS-action matrix representation" @time preps = perm_reps(autS, RG.basis[1:size(RG.pm,1)], RG.basis_dict) @time mreps = matrix_reps(preps) verbose && @info "Computing the projection matrices Uπs" @time Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps] multiplicities = size.(Uπs,2) dimensions = [Int(p[one(autS)]*Int(order(autS))) for p in autS_mps] if verbose info_strs = ["", lpad("multiplicities", 14) * " =" * join(lpad.(multiplicities, 4), ""), lpad("dimensions", 14) * " =" * join(lpad.(dimensions, 4), "") ] @info join(info_strs, "\n") end @assert dot(multiplicities, dimensions) == size(RG.pm,1) return OrbitData(orbs, preps, Uπs, dimensions) end function decimate(od::OrbitData) nzros = [i for i in 1:length(od.Uπs) if size(od.Uπs[i],2) !=0] Us = map(x -> PropertyT.sparsify!(x, eps(Float64)*1e3, verbose=true), od.Uπs[nzros]) #dimensions of the corresponding πs: dims = od.dims[nzros] return OrbitData(od.orbits, od.preps, Array{Float64}.(Us), dims); end function orthSVD(M::AbstractMatrix{T}) where {T<:AbstractFloat} M = Matrix(M) fact = svd(M) M_rank = sum(fact.S .> maximum(size(M))*eps(T)) return fact.U[:,1:M_rank] end orbit_decomposition(G::Group, E::AbstractVector, rdict=GroupRings.reverse_dict(E)) = orbit_decomposition(collect(G), E, rdict) function orbit_decomposition(elts::AbstractVector{<:GroupElem}, E::AbstractVector, rdict=GroupRings.reverse_dict(E)) tovisit = trues(size(E)); orbits = Vector{Vector{Int}}() orbit = zeros(Int, length(elts)) for i in eachindex(E) if tovisit[i] g = E[i] Threads.@threads for j in eachindex(elts) orbit[j] = rdict[elts[j](g)] end tovisit[orbit] .= false push!(orbits, unique(orbit)) end end return orbits end ############################################################################### # # Sparsification # ############################################################################### dens(M::SparseMatrixCSC) = nnz(M)/length(M) dens(M::AbstractArray) = count(!iszero, M)/length(M) function sparsify!(M::SparseMatrixCSC{Tv,Ti}, eps=eps(Tv); verbose=false) where {Tv,Ti} densM = dens(M) for i in eachindex(M.nzval) if abs(M.nzval[i]) < eps M.nzval[i] = zero(Tv) end end dropzeros!(M) if verbose @info("Sparsified density:", rpad(densM, 20), " → ", rpad(dens(M), 20), " ($(nnz(M)) non-zeros)") end return M end function sparsify!(M::AbstractArray{T}, eps=eps(T); verbose=false) where T densM = dens(M) clamp_small!(M, eps) if verbose @info("Sparsifying $(size(M))-matrix... \n $(rpad(densM, 20)) → $(rpad(dens(M),20))), ($(count(!iszero, M)) non-zeros)") end return sparse(M) end function clamp_small!(M::AbstractArray{T}, eps=eps(T)) where T for n in eachindex(M) if abs(M[n]) < eps M[n] = zero(T) end end return M end function sparsify(U::AbstractArray{T}, tol=eps(T); verbose=false) where T return sparsify!(deepcopy(U), tol, verbose=verbose) end ############################################################################### # # perm-, matrix-, representations # ############################################################################### function perm_repr(g::GroupElem, E::Vector, E_dict) p = Vector{Int}(undef, length(E)) for (i,elt) in enumerate(E) p[i] = E_dict[g(elt)] end return p end function perm_reps(G::Group, E::Vector, E_rdict=GroupRings.reverse_dict(E)) elts = collect(G) l = length(elts) preps = Vector{perm}(undef, l) permG = PermutationGroup(length(E)) Threads.@threads for i in 1:l preps[i] = permG(PropertyT.perm_repr(elts[i], E, E_rdict), false) end return Dict(elts[i]=>preps[i] for i in 1:l) end function matrix_repr(x::GroupRingElem, mreps::Dict) nzeros = findall(!iszero, x.coeffs) return sum(x[i].*mreps[parent(x).basis[i]] for i in nzeros) end function matrix_reps(preps::Dict{T,perm{I}}) where {T<:GroupElem, I<:Integer} kk = collect(keys(preps)) mreps = Vector{SparseMatrixCSC{Float64, Int}}(undef, length(kk)) Threads.@threads for i in 1:length(kk) mreps[i] = AbstractAlgebra.matrix_repr(preps[kk[i]]) end return Dict(kk[i] => mreps[i] for i in 1:length(kk)) end ############################################################################### # # actions # ############################################################################### function (g::GroupRingElem)(y::GroupRingElem) res = parent(y)() for elt in GroupRings.supp(g) res += g[elt]*elt(y) end return res end ############################################################################### # # perm actions # ############################################################################### function (g::perm)(y::GroupRingElem) RG = parent(y) result = zero(RG, eltype(y.coeffs)) for (idx, c) in enumerate(y.coeffs) if c!= zero(eltype(y.coeffs)) result[g(RG.basis[idx])] = c end end return result end function (g::perm)(y::GroupRingElem{T, <:SparseVector}) where T RG = parent(y) index = [RG.basis_dict[g(RG.basis[idx])] for idx in y.coeffs.nzind] result = GroupRingElem(sparsevec(index, y.coeffs.nzval, y.coeffs.n), RG) return result end function (p::perm)(A::MatAlgElem) length(p.d) == size(A, 1) == size(A,2) || throw("Can't act via $p on matrix of size $(size(A))") result = similar(A) @inbounds for i in 1:size(A, 1) for j in 1:size(A, 2) result[p[i], p[j]] = A[i,j] # action by permuting rows and colums/conjugation end end return result end ############################################################################### # # WreathProductElems action on MatAlgElem # ############################################################################### function (g::WreathProductElem)(y::GroupRingElem) RG = parent(y) result = zero(RG, eltype(y.coeffs)) for (idx, c) in enumerate(y.coeffs) if c!= zero(eltype(y.coeffs)) result[g(RG.basis[idx])] = c end end return result end function (g::WreathProductElem{N})(A::MatAlgElem) where N # @assert N == size(A,1) == size(A,2) flips = ntuple(i->(g.n[i].d[1]==1 && g.n[i].d[2]==2 ? 1 : -1), N) result = similar(A) R = base_ring(parent(A)) tmp = R(1) @inbounds for i = 1:size(A,1) for j = 1:size(A,2) x = A[i, j] if flips[i]*flips[j] == 1 result[g.p[i], g.p[j]] = x else result[g.p[i], g.p[j]] = -x end # result[i, j] = AbstractAlgebra.mul!(x, x, flips[i]*flips[j]) # this mul! needs to be separately defined, but is 2x faster end end return result end ############################################################################### # # Action of WreathProductElems on AutGroupElem # ############################################################################### function AutFG_emb(A::AutGroup, g::WreathProductElem) isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)") parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A") elt = one(A) Id = one(parent(g.n.elts[1])) flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id] Groups.r_multiply!(elt, flips, reduced=false) Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)]) return elt end function (g::WreathProductElem)(a::Groups.Automorphism) A = parent(a) g_emb = AutFG_emb(A,g) res = deepcopy(g_emb) res = Groups.r_multiply!(res, a.symbols, reduced=false) res = Groups.r_multiply!(res, [inv(s) for s in reverse!(g_emb.symbols)]) return res end function (p::perm)(a::Groups.Automorphism) res = parent(a)(Groups.perm_autsymbol(p)) res = Groups.r_multiply!(res, a.symbols, reduced=false) res = Groups.r_multiply!(res, [Groups.perm_autsymbol(inv(p))]) return res end