module Groups import Base: length, ==, hash, show import Base: one, inv, reduce, *, ^ export GSymbol, GWord export IdSymbol, change_pow abstract GSymbol function show(io::IO, s::GSymbol) if s.pow == 0 || s.pow == 1 print(io, s.gen) else print(io, (s.gen)*"^$(s.pow)") end end length(s::GSymbol) = (s.pow == 0 ? 0 : 1) IdSymbol(T::Type{GSymbol}) = throw(ArgumentError("Define IdSymbol(::Type{$T}) which is the identity element for Your type!")) one{T<:GSymbol}(::Type{T}) = IdSymbol(T) one(s::GSymbol) = one(typeof(s)) (*){T<:GSymbol}(s::T, t::T) = return GWord{T}([s])*t change_pow(s::GSymbol, n::Int) = throw(ArgumentError("Define change_pow function for $(typeof(s))!")) abstract Word type GWord{T<:GSymbol} <: Word symbols::Vector{T} savedhash::UInt modified::Bool function GWord(symbols::Vector{T}) return new(symbols, hash(symbols), false) end end GWord{T<:GSymbol}(s::T) = GWord{T}([s]) IDWord{T<:GSymbol}(::Type{T}) = GWord(one(T)) IDWord{T<:GSymbol}(W::GWord{T}) = IDWord(T) function length(W::GWord) return sum([abs(s.pow) for s in W.symbols]) end one{T}(::Type{GWord{T}}) = IDWord(T) one{T}(w::GWord{T}) = one(GWord{T}) function inv{T}(W::GWord{T}) if length(W) == 0 return W else return freegroup_reduce!(GWord{T}(reverse([inv(s) for s in W.symbols]))) end end function join_free_symbols!(W::GWord) reduced = true for i in 1:length(W.symbols) - 1 if W.symbols[i].gen == W.symbols[i+1].gen reduced = false p1 = W.symbols[i].pow p2 = W.symbols[i+1].pow W.symbols[i+1] = change_pow(W.symbols[i], p1 + p2) W.symbols[i] = one(W.symbols[i]) end end return reduced end function freegroup_reduce!{T}(W::GWord{T}) if length(W) < 2 deleteat!(W.symbols, find(x -> x.pow == 0, W.symbols)) else reduced = false while !reduced reduced = join_free_symbols!(W) deleteat!(W.symbols, find(x -> x.pow == 0, W.symbols)) end end W.modified = false W.savedhash = hash(W.symbols,hash(typeof(W))) return W end freegroup_reduce(W::GWord) = freegroup_reduce!(deepcopy(W)) hash{T}(W::GWord{T}) = (W.modified && freegroup_reduce!(W); W.savedhash) function (==){T}(W::GWord{T}, Z::GWord{T}) W.modified && freegroup_reduce!(W) # reduce could actually clear the flag and recalculate the hash Z.modified && freegroup_reduce!(Z) return W.savedhash == Z.savedhash && W.symbols == Z.symbols end function show(io::IO, W::GWord) if length(W) == 0 print(io, "(id)") else join(io, [string(s) for s in W.symbols], "*") end end function r_multiply!(W::GWord, x; reduced::Bool=true) if length(x) > 0 push!(W.symbols, x...) end if reduced freegroup_reduce!(W) end return W end function l_multiply!(W::GWord, x; reduced::Bool=true) if length(x) > 0 unshift!(W.symbols, reverse(x)...) end if reduced freegroup_reduce!(W) end return W end r_multiply(W::GWord, x; reduced::Bool=true) = r_multiply!(deepcopy(W),x, reduced=reduced) l_multiply(W::GWord, x; reduced::Bool=true) = l_multiply!(deepcopy(W),x, reduced=reduced) (*){T}(W::GWord{T}, Z::GWord{T}) = r_multiply(W, Z.symbols) (*)(W::GWord, s::GSymbol) = W*GWord(s) (*)(s::GSymbol, W::GWord) = GWord(s)*W function power_by_squaring{T}(x::GWord{T}, p::Integer) if p < 0 return power_by_squaring(inv(x), -p) elseif p == 0 return one(x) elseif p == 1 return deepcopy(x) elseif p == 2 return x*x end t = trailing_zeros(p) + 1 p >>= t while (t -= 1) > 0 x *= x end y = x while p > 0 t = trailing_zeros(p) + 1 p >>= t while (t -= 1) >= 0 x *= x end y *= x end return freegroup_reduce!(y) end (^)(x::GWord, n::Integer) = power_by_squaring(x,n) end