using LinearAlgebra BLAS.set_num_threads(8) ENV["OMP_NUM_THREADS"] = 1 using Groups import Groups.MatrixGroups include(joinpath(@__DIR__, "../test/optimizers.jl")) using PropertyT using PropertyT.SymbolicWedderburn using PropertyT.PermutationGroups using PropertyT.StarAlgebras include(joinpath(@__DIR__, "argparse.jl")) include(joinpath(@__DIR__, "utils.jl")) const N = parsed_args["N"] const HALFRADIUS = parsed_args["halfradius"] const UPPER_BOUND = parsed_args["upper_bound"] const GENUS = 2N G = MatrixGroups.SymplecticGroup{GENUS}(Int8) RG, S, sizes = @time PropertyT.group_algebra(G, halfradius=HALFRADIUS, twisted=true) wd = let RG = RG, N = N G = StarAlgebras.object(RG) P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1))) Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P) # Σ = P act = PropertyT.action_by_conjugation(G, Σ) @info "Computing WedderburnDecomposition" wdfl = @time SymbolicWedderburn.WedderburnDecomposition( Float64, Σ, act, basis(RG), StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]), ) end Δ = RG(length(S)) - sum(RG(s) for s in S) Δs = PropertyT.laplacians( RG, S, x -> (gx = PropertyT.grading(x); Set([gx, -gx])), ) # elt = Δ^2 elt = PropertyT.Adj(Δs, :C₂) unit = Δ @time model, varP = PropertyT.sos_problem_primal( elt, unit, wd, upper_bound=UPPER_BOUND, augmented=true, show_progress=true ) solve_in_loop( model, wd, varP, logdir="./log/r=$HALFRADIUS/Sp($N,Z)/Adj_C₂-InfΔ", optimizer=cosmo_optimizer( eps=1e-10, max_iters=20_000, accel=50, alpha=1.95, ), data=(elt=elt, unit=unit, halfradius=HALFRADIUS) )