############################################################################### # # OrbitData # ############################################################################### struct OrbitData{T<:AbstractArray{Float64, 2}, GEl<:GroupElem, P<:perm} orbits::Vector{Vector{Int}} preps::Dict{GEl, P} Uπs::Vector{T} dims::Vector{Int} end function OrbitData(RG::GroupRing, autS::Group, verbose=true) verbose && @info("Decomposing basis of RG into orbits of $(autS)") @time orbs = orbit_decomposition(autS, RG.basis, RG.basis_dict) @assert sum(length(o) for o in orbs) == length(RG.basis) verbose && @info("The action has $(length(orbs)) orbits") verbose && @info("Projections in the Group Ring of AutS = $autS") @time autS_mps = Projections.rankOne_projections(GroupRing(autS, collect(autS))) verbose && @info("AutS-action matrix representatives") @time preps = perm_reps(autS, RG.basis[1:size(RG.pm,1)], RG.basis_dict) @time mreps = matrix_reps(preps) verbose && @info("Projection matrices Uπs") @time Uπs = [orthSVD(matrix_repr(p, mreps)) for p in autS_mps] multiplicities = size.(Uπs,2) verbose && @info("multiplicities = $multiplicities") dimensions = [Int(p[autS()]*Int(order(autS))) for p in autS_mps] verbose && @info("dimensions = $dimensions") @assert dot(multiplicities, dimensions) == size(RG.pm,1) return OrbitData(orbs, preps, Uπs, dimensions) end function decimate(od::OrbitData) nzros = [i for i in 1:length(od.Uπs) if size(od.Uπs[i],2) !=0] Us = map(x -> PropertyT.sparsify!(x, eps(Float64)*1e3, verbose=true), od.Uπs[nzros]) #dimensions of the corresponding πs: dims = od.dims[nzros] return OrbitData(od.orbits, od.preps, Array{Float64}.(Us), dims); end function orthSVD(M::AbstractMatrix{T}) where {T<:AbstractFloat} M = Matrix(M) fact = svd(M) M_rank = sum(fact.S .> maximum(size(M))*eps(T)) return fact.U[:,1:M_rank] end function orbit_decomposition(G::Group, E::Vector, rdict=GroupRings.reverse_dict(E)) elts = collect(G) tovisit = trues(size(E)); orbits = Vector{Vector{Int}}() orbit = zeros(Int, length(elts)) for i in eachindex(E) if tovisit[i] g = E[i] Threads.@threads for j in eachindex(elts) orbit[j] = rdict[elts[j](g)] end tovisit[orbit] .= false push!(orbits, unique(orbit)) end end return orbits end ############################################################################### # # Sparsification # ############################################################################### dens(M::SparseMatrixCSC) = nnz(M)/length(M) dens(M::AbstractArray) = count(!iszero, M)/length(M) function sparsify!(M::SparseMatrixCSC{Tv,Ti}, eps=eps(Tv); verbose=false) where {Tv,Ti} densM = dens(M) for i in eachindex(M.nzval) if abs(M.nzval[i]) < eps M.nzval[i] = zero(Tv) end end dropzeros!(M) if verbose @info("Sparsified density:", rpad(densM, 20), " → ", rpad(dens(M), 20), " ($(nnz(M)) non-zeros)") end return M end function sparsify!(M::AbstractArray{T}, eps=eps(T); verbose=false) where T densM = dens(M) if verbose @info("Sparsifying $(size(M))-matrix... ") end for n in eachindex(M) if abs(M[n]) < eps M[n] = zero(T) end end if verbose @info("$(rpad(densM, 20)) → $(rpad(dens(M),20))), ($(count(!iszero, M)) non-zeros)") end return sparse(M) end function sparsify(U::AbstractArray{T}, tol=eps(T); verbose=false) where T return sparsify!(deepcopy(U), tol, verbose=verbose) end ############################################################################### # # perm-, matrix-, representations # ############################################################################### function perm_repr(g::GroupElem, E::Vector, E_dict) p = Vector{Int}(undef, length(E)) for (i,elt) in enumerate(E) p[i] = E_dict[g(elt)] end return p end function perm_reps(G::Group, E::Vector, E_rdict=GroupRings.reverse_dict(E)) elts = collect(G) l = length(elts) preps = Vector{perm}(undef, l) permG = PermutationGroup(length(E)) Threads.@threads for i in 1:l preps[i] = permG(PropertyT.perm_repr(elts[i], E, E_rdict), false) end return Dict(elts[i]=>preps[i] for i in 1:l) end function matrix_repr(x::GroupRingElem, mreps::Dict) nzeros = findall(!iszero, x.coeffs) return sum(x[i].*mreps[parent(x).basis[i]] for i in nzeros) end function matrix_reps(preps::Dict{T,perm{I}}) where {T<:GroupElem, I<:Integer} kk = collect(keys(preps)) mreps = Vector{SparseMatrixCSC{Float64, Int}}(undef, length(kk)) Threads.@threads for i in 1:length(kk) mreps[i] = AbstractAlgebra.matrix_repr(preps[kk[i]]) end return Dict(kk[i] => mreps[i] for i in 1:length(kk)) end ############################################################################### # # actions # ############################################################################### function (p::perm)(A::GroupRingElem) RG = parent(A) result = zero(RG, eltype(A.coeffs)) for (idx, c) in enumerate(A.coeffs) if c!= zero(eltype(A.coeffs)) result[p(RG.basis[idx])] = c end end return result end ############################################################################### # # Action of WreathProductElems on Nemo.MatElem # ############################################################################### function matrix_emb(n::DirectPowerGroupElem, p::perm) Id = parent(n.elts[1])() elt = Diagonal([(-1)^(el == Id ? 0 : 1) for el in n.elts]) return elt[:, p.d] end function (g::WreathProductElem)(A::MatElem) g_inv = inv(g) G = matrix_emb(g.n, g_inv.p) G_inv = matrix_emb(g_inv.n, g.p) M = parent(A) return M(G)*A*M(G_inv) end import Base.* @doc doc""" *(x::AbstractAlgebra.MatElem, P::Generic.perm) > Apply the pemutation $P$ to the rows of the matrix $x$ and return the result. """ function *(x::AbstractAlgebra.MatElem, P::Generic.perm) z = similar(x) m = rows(x) n = cols(x) for i = 1:m for j = 1:n z[i, j] = x[i,P[j]] end end return z end function (p::perm)(A::MatElem) length(p.d) == A.r == A.c || throw("Can't act via $p on matrix of size ($(A.r), $(A.c))") return p*A*inv(p) end ############################################################################### # # Action of WreathProductElems on AutGroupElem # ############################################################################### function AutFG_emb(A::AutGroup, g::WreathProductElem) isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)") parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A") elt = A() Id = parent(g.n.elts[1])() flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id] Groups.r_multiply!(elt, flips, reduced=false) Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)]) return elt end function AutFG_emb(A::AutGroup, p::perm) isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)") parent(p).n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(p)) into $A") return A(Groups.perm_autsymbol(p)) end function (g::WreathProductElem)(a::Groups.Automorphism) A = parent(a) g = AutFG_emb(A,g) res = A() Groups.r_multiply!(res, g.symbols, reduced=false) Groups.r_multiply!(res, a.symbols, reduced=false) Groups.r_multiply!(res, [inv(s) for s in reverse!(g.symbols)]) return res end function (p::perm)(a::Groups.Automorphism) g = AutFG_emb(parent(a),p) return g*a*inv(g) end