import Base: rationalize using ValidatedNumerics ValidatedNumerics.setrounding(Interval, :correct) # ValidatedNumerics.setrounding(Interval, :fast) #which is slower?? ValidatedNumerics.setformat(:standard) # setprecision(Interval, 53) # slightly faster than 256 function EOI{T<:Number}(Δ::GroupRingElem{T}, λ::T) return Δ*Δ - λ*Δ end function groupring_square(vect, elt) zzz = zeros(eltype(vect), elt.coeffs) zzz[1:length(vect)] = vect return GroupRings.groupring_mult(zzz, zzz, parent(elt).pm) end function compute_SOS(sqrt_matrix, elt) n = size(sqrt_matrix,2) T = eltype(sqrt_matrix) # result = zeros(T, length(elt.coeffs)) # for i in 1:n # result += groupring_square(sqrt_matrix[:,i], elt) # end result = @parallel (+) for i in 1:n groupring_square(sqrt_matrix[:,i], elt) end return GroupRingElem(result, parent(elt)) end function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2}) sqrt_corrected = similar(sqrt_matrix) l = size(sqrt_matrix,2) for i in 1:l col = sqrt_matrix[:,i] sqrt_corrected[:,i] = col - sum(col)//l # @assert sum(sqrt_corrected[:,i]) == 0 end return sqrt_corrected end import ValidatedNumerics.± function (±){T<:Number}(X::AbstractArray{T}, tol::Real) r{T}(x::T) = (x == zero(T)? @interval(0) : x ± tol) return r.(X) end (±)(X::GroupRingElem, tol::Real) = GroupRingElem(X.coeffs ± tol, parent(X)) function Base.rationalize{T<:Integer, S<:Real}(::Type{T}, X::AbstractArray{S}; tol::Real=eps(eltype(X))) r(x) = rationalize(T, x, tol=tol) return r.(X) end ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol) function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}; len=4) SOS = compute_SOS(sqrt_matrix, Δ) SOS_diff = EOI(Δ, λ) - SOS eoi_SOS_L1_dist = norm(SOS_diff,1) info(logger, "λ = $λ (≈$(@sprintf("%.10f", float(λ)))") ɛ_dist = GroupRings.augmentation(SOS_diff) if ɛ_dist ≠ 0//1 warn(logger, "The SOS is not in the augmentation ideal, numbers below are meaningless!") end info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) = $ɛ_dist") info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ = $(@sprintf("%.10f", float(eoi_SOS_L1_dist)))") distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist return distance_to_cone end function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,2}, Δ::GroupRingElem{T}; len=4) SOS = compute_SOS(sqrt_matrix, Δ) info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))") λ_int = @interval(λ) Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ).pm) SOS_diff = EOI(Δ_int, λ_int) - SOS eoi_SOS_L1_dist = norm(SOS_diff,1) info(logger, "λ = $λ (≈≥$(@sprintf("%.10f",float(λ))))") ɛ_dist = GroupRings.augmentation(SOS_diff) info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)") info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)") distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist return distance_to_cone end function distance_to_cone{T<:AbstractFloat}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}; len=4) SOS = compute_SOS(sqrt_matrix, Δ) SOS_diff = EOI(Δ, λ) - SOS eoi_SOS_L1_dist = norm(SOS_diff,1) info(logger, "λ = $λ") ɛ_dist = GroupRings.augmentation(SOS_diff) info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))") info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))") distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist return distance_to_cone end function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P; tol=1e-7, rational=false, len=4) isapprox(eigvals(P), abs(eigvals(P)), atol=tol) || warn("The solution matrix doesn't seem to be positive definite!") # @assert P == Symmetric(P) Q = real(sqrtm(P)) info(logger, "------------------------------------------------------------") info(logger, "") info(logger, "Checking in floating-point arithmetic...") t = @timed fp_distance = distance_to_cone(λ, Q, Δ, len=len) info(logger, timed_msg(t)) info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))") info(logger, "------------------------------------------------------------") if fp_distance ≤ 0 return fp_distance end info(logger, "Projecting columns of rationalized Q to the augmentation ideal...") δ = eps(λ) Q_ℚ = ℚ(Q, δ) t = @timed Q_ℚω = correct_to_augmentation_ideal(Q_ℚ) info(logger, timed_msg(t)) λ_ℚ = ℚ(λ, δ) Δ_ℚ = ℚ(Δ, δ) info(logger, "Checking in interval arithmetic") Q_ℚω_int = Float64.(Q_ℚω) ± δ t = @timed Interval_dist_to_ΣSq = distance_to_cone(λ_ℚ, Q_ℚω_int, Δ_ℚ, len=len) info(logger, timed_msg(t)) info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)") info(logger, "------------------------------------------------------------") if Interval_dist_to_ΣSq.lo ≤ 0 || !rational return Interval_dist_to_ΣSq else info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...") t = @timed ℚ_dist_to_ΣSq = distance_to_cone(λ_ℚ, Q_ℚω, Δ_ℚ, len=len) info(logger, timed_msg(t)) @assert isa(ℚ_dist_to_ΣSq, Rational) info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_ΣSq,8)))") info(logger, "------------------------------------------------------------") return ℚ_dist_to_ΣSq end end