@testset "Sq, Adj, Op" begin function isconstant_on_orbit(v, orb) isempty(orb) && return true k = v[first(orb)] return all(v[o] == k for o in orb) end @testset "unit tests" begin for N in [3,4] M = MatrixSpace(Nemo.ZZ, N,N) A = SAut(FreeGroup(N)) @test length(PropertyT.generating_set(M)) == 2N*(N-1) S = PropertyT.generating_set(M) @test all(inv(s) ∈ S for s in S) @test length(PropertyT.generating_set(A)) == 4N*(N-1) S = PropertyT.generating_set(A) @test all(inv(s) ∈ S for s in S) end N = 4 M = MatrixSpace(Nemo.ZZ, N,N) S = PropertyT.generating_set(M) @test PropertyT.E(M, 1, 2) isa MatElem e12 = PropertyT.E(M, 1, 2) @test e12[1,2] == 1 @test inv(e12)[1,2] == -1 @test e12 ∈ S @test PropertyT.isopposite(perm"(1,2,3)(4)", perm"(1,4,2)") @test PropertyT.isadjacent(perm"(1,2,3)", perm"(1,2)(3)") @test !PropertyT.isopposite(perm"(1,2,3)", perm"(1,2)(3)") @test !PropertyT.isadjacent(perm"(1,4)", perm"(2,3)(4)") @test isconstant_on_orbit([1,1,1,2,2], [2,3]) @test !isconstant_on_orbit([1,1,1,2,2], [2,3,4]) end @testset "Sq, Adj, Op" begin N = 4 M = MatrixSpace(Nemo.ZZ, N,N) S = PropertyT.generating_set(M) Δ = PropertyT.Laplacian(S, 2) RG = parent(Δ) autS = WreathProduct(PermGroup(2), PermGroup(N)) orbits = PropertyT.orbit_decomposition(autS, RG.basis) @test PropertyT.Sq(RG) isa GroupRingElem sq = PropertyT.Sq(RG) @test all(isconstant_on_orbit(sq, orb) for orb in orbits) @test PropertyT.Adj(RG) isa GroupRingElem adj = PropertyT.Adj(RG) @test all(isconstant_on_orbit(adj, orb) for orb in orbits) @test PropertyT.Op(RG) isa GroupRingElem op = PropertyT.Op(RG) @test all(isconstant_on_orbit(op, orb) for orb in orbits) sq, adj, op = PropertyT.SqAdjOp(RG, N) @test sq == PropertyT.Sq(RG) @test adj == PropertyT.Adj(RG) @test op == PropertyT.Op(RG) e = one(M) g = PropertyT.E(M, 1,2) h = PropertyT.E(M, 1,3) k = PropertyT.E(M, 3,4) edges = N*(N-1)÷2 @test sq[e] == 20*edges @test sq[g] == sq[h] == -8 @test sq[g^2] == sq[h^2] == 1 @test sq[g*h] == sq[h*g] == 0 # @test adj[e] == ... @test adj[g] == adj[h] # == ... @test adj[g^2] == adj[h^2] == 0 @test adj[g*h] == adj[h*g] # == ... # @test op[e] == ... @test op[g] == op[h] # == ... @test op[g^2] == op[h^2] == 0 @test op[g*h] == op[h*g] == 0 @test op[g*k] == op[k*g] # == ... @test op[h*k] == op[k*h] == 0 end end