import Base: rationalize using ValidatedNumerics ValidatedNumerics.setrounding(Interval, :correct) ValidatedNumerics.setformat(:standard) function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T) return Δ*Δ - κ*Δ end function algebra_square(vector, elt) zzz = zeros(eltype(vector), elt.coefficients) zzz[1:length(vector)] = vector # new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix) # return (new_base_elt*new_base_elt).coefficients return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix) end function compute_SOS(sqrt_matrix, elt) n = size(sqrt_matrix,2) T = eltype(sqrt_matrix) # result = zeros(T, length(elt.coefficients)) # for i in 1:n # result += algebra_square(sqrt_matrix[:,i], elt) # end result = @parallel (+) for i in 1:n PropertyT.algebra_square(sqrt_matrix[:,i], elt) end return GroupAlgebraElement(result, elt.product_matrix) end function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2}) sqrt_corrected = similar(sqrt_matrix) l = size(sqrt_matrix,2) for i in 1:l col = view(sqrt_matrix,:,i) sqrt_corrected[:,i] = col - sum(col)//l # @assert sum(sqrt_corrected[:,i]) == 0 end return sqrt_corrected end import ValidatedNumerics.± function (±){T<:Number}(X::AbstractArray{T}, tol::Real) r{T}(x::T) = (x == zero(T)? @interval(0) : x ± tol) return r.(X) end (±)(X::GroupAlgebraElement, tol::Real) = GroupAlgebraElement(X.coefficients ± tol, X.product_matrix) function Base.rationalize{T<:Integer, S<:Real}(::Type{T}, X::AbstractArray{S}; tol::Real=eps(eltype(X))) r(x) = rationalize(T, x, tol=tol) return r.(X) end ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol) function distance_to_cone{T<:Rational}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}) SOS = compute_SOS(sqrt_matrix, Δ) SOS_diff = EOI(Δ, κ) - SOS eoi_SOS_L₁_dist = norm(SOS_diff,1) info(logger, "κ = $κ (≈$(@sprintf("%.10f", float(κ)))") ɛ_dist = GroupAlgebras.ɛ(SOS_diff) if ɛ_dist ≠ 0//1 warn(logger, "The SOS is not in the augmentation ideal, number below are meaningless!") end info(logger, "ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) = $ɛ_dist") info(logger, "‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ = $(@sprintf("%.10f", float(eoi_SOS_L₁_dist)))") distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist return distance_to_cone end function distance_to_cone{T<:Rational, S<:Interval}(κ::T, sqrt_matrix::Array{S,2}, Δ::GroupAlgebraElement{T}) SOS = compute_SOS(sqrt_matrix, Δ) info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupAlgebras.ɛ(SOS))") SOS_diff = EOI(Δ, κ) - SOS eoi_SOS_L₁_dist = norm(SOS_diff,1) info(logger, "κ = $κ (≈$(@sprintf("%.10f",float(κ))))") ɛ_dist = GroupAlgebras.ɛ(SOS_diff) info(logger, "ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)") info(logger, "‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L₁_dist)") distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist return distance_to_cone end function distance_to_cone{T<:AbstractFloat}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}) SOS = compute_SOS(sqrt_matrix, Δ) SOS_diff = EOI(Δ, κ) - SOS eoi_SOS_L₁_dist = norm(SOS_diff,1) info(logger, "κ = $κ") ɛ_dist = GroupAlgebras.ɛ(SOS_diff) info(logger, "ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))") info(logger, "‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L₁_dist))") distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist return distance_to_cone end function check_distance_to_positive_cone(Δ::GroupAlgebraElement, κ, A; tol=1e-7, rational=false) isapprox(eigvals(A), abs(eigvals(A)), atol=tol) || warn("The solution matrix doesn't seem to be positive definite!") @assert A == Symmetric(A) A_sqrt = real(sqrtm(A)) info(logger, "------------------------------------------------------------") info(logger, "") info(logger, "Checking in floating-point arithmetic...") t = @timed fp_distance = distance_to_cone(κ, A_sqrt, Δ) info(logger, timed_msg(t)) info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))") info(logger, "------------------------------------------------------------") info(logger, "Projecting columns of rationalized A_sqrt to the augmentation ideal...") δ = eps(κ) A_sqrt_ℚ = ℚ(A_sqrt, δ) t = @timed A_sqrt_ℚ_aug = correct_to_augmentation_ideal(A_sqrt_ℚ) info(logger, timed_msg(t)) κ_ℚ = ℚ(κ, δ) Δ_ℚ = ℚ(Δ, δ) info(logger, "Checking in interval arithmetic") A_sqrt_ℚ_augⁱⁿᵗ = Float64.(A_sqrt_ℚ_aug) ± δ t = @timed Interval_dist_to_Σ² = distance_to_cone(κ_ℚ, A_sqrt_ℚ_augⁱⁿᵗ, Δ_ℚ) info(logger, timed_msg(t)) info(logger, "The Augmentation-projected actual distance (to positive cone) ≥ $(@sprintf("%.10f", Interval_dist_to_Σ².lo))") info(logger, "------------------------------------------------------------") if Interval_dist_to_Σ².lo ≤ 0 || !rational return Interval_dist_to_Σ².lo else info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...") t = @timed ℚ_dist_to_Σ² = distance_to_cone(κ_ℚ, A_sqrt_ℚ_aug, Δ_ℚ) info(logger, timed_msg(t)) @assert isa(ℚ_dist_to_Σ², Rational) info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_Σ²,8)))") info(logger, "------------------------------------------------------------") return ℚ_dist_to_Σ² end end