import Base: rationalize using IntervalArithmetic IntervalArithmetic.setrounding(Interval, :tight) IntervalArithmetic.setformat(sigfigs=10) IntervalArithmetic.setprecision(Interval, 53) # slightly faster than 256 import IntervalArithmetic.± function (±){T<:Number}(X::AbstractArray{T}, tol::Real) r{T}(x::T) = (x == zero(T)? @interval(0) : x ± tol) return r.(X) end (±)(X::GroupRingElem, tol::Real) = GroupRingElem(X.coeffs ± tol, parent(X)) function Base.rationalize{T<:Integer, S<:Real}(::Type{T}, X::AbstractArray{S}; tol::Real=eps(eltype(X))) r(x) = rationalize(T, x, tol=tol) return r.(X) end ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol) EOI{T<:Number}(Δ::GroupRingElem{T}, λ::T) = Δ*Δ - λ*Δ function groupring_square(vect::AbstractVector, l, pm) zzz = zeros(eltype(vect), l) zzz[1:length(vect)] .= vect return GroupRings.mul!(similar(zzz), zzz, zzz, pm) end function compute_SOS(sqrt_matrix, elt::GroupRingElem) n = size(sqrt_matrix,2) l = length(elt.coeffs) pm = parent(elt).pm # result = zeros(eltype(sqrt_matrix), l) # for i in 1:n # result .+= groupring_square(view(sqrt_matrix,:,i), l, pm) # end @everywhere groupring_square = PropertyT.groupring_square result = @parallel (+) for i in 1:n groupring_square(view(sqrt_matrix,:,i), length(elt.coeffs), parent(elt).pm) end return GroupRingElem(result, parent(elt)) end function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2}) l = size(sqrt_matrix, 2) sqrt_corrected = Array{Interval{Float64}}(l,l) Threads.@threads for j in 1:l col = sum(view(sqrt_matrix, :,j))//l for i in 1:l sqrt_corrected[i,j] = (Float64(sqrt_matrix[i,j]) - Float64(col)) ± eps(0.0) end end return sqrt_corrected end function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}, wlen) SOS = compute_SOS(sqrt_matrix, Δ) SOS_diff = EOI(Δ, λ) - SOS eoi_SOS_L1_dist = norm(SOS_diff,1) info(logger, "λ = $λ (≈$(@sprintf("%.10f", float(λ)))") ɛ_dist = GroupRings.augmentation(SOS_diff) if ɛ_dist ≠ 0//1 warn(logger, "The SOS is not in the augmentation ideal, numbers below are meaningless!") end info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) = $ɛ_dist") info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ = $(@sprintf("%.10f", float(eoi_SOS_L1_dist)))") distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist return distance_to_cone end function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::AbstractArray{S,2}, Δ::GroupRingElem{T}, wlen) SOS = compute_SOS(sqrt_matrix, Δ) info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))") λ_int = @interval(λ) Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ)) SOS_diff = EOI(Δ_int, λ_int) - SOS eoi_SOS_L1_dist = norm(SOS_diff,1) info(logger, "λ = $λ (≈≥$(@sprintf("%.10f",float(λ))))") ɛ_dist = GroupRings.augmentation(SOS_diff) info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)") info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)") distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist return distance_to_cone end function distance_to_cone(λ, sqrt_matrix::AbstractArray, Δ::GroupRingElem, wlen) SOS = compute_SOS(sqrt_matrix, Δ) SOS_diff = EOI(Δ, λ) - SOS eoi_SOS_L1_dist = norm(SOS_diff,1) info(logger, "λ = $λ") ɛ_dist = GroupRings.augmentation(SOS_diff) info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))") info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))") distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist return distance_to_cone end function rationalize_and_project{T}(Q::AbstractArray{T}, δ::T, logger) info(logger, "") info(logger, "Rationalizing with accuracy $δ") t = @timed Q = ℚ(Q, δ) info(logger, timed_msg(t)) info(logger, "Projecting columns of the rationalized Q to the augmentation ideal...") t = @timed Q = correct_to_augmentation_ideal(Q) info(logger, timed_msg(t)) info(logger, "Checking that sum of every column contains 0.0... ") check = all([0.0 in sum(view(Q, :, i)) for i in 1:size(Q, 2)]) info(logger, (check? "They do." : "FAILED!")) @assert check return Q end function check_distance_to_positive_cone(Δ::GroupRingElem, λ, Q, wlen; tol=1e-14, rational=false) info(logger, "------------------------------------------------------------") info(logger, "") info(logger, "Checking in floating-point arithmetic...") t = @timed fp_distance = distance_to_cone(λ, Q, Δ, wlen) info(logger, timed_msg(t)) info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))") info(logger, "------------------------------------------------------------") if fp_distance ≤ 0 return fp_distance end info(logger, "") Q_ℚω_int = rationalize_and_project(Q, tol, logger) λ_ℚ = ℚ(λ, tol) Δ_ℚ = ℚ(Δ, tol) info(logger, "Checking in interval arithmetic") t = @timed Interval_dist_to_ΣSq = distance_to_cone(λ_ℚ, Q_ℚω_int, Δ_ℚ, wlen) info(logger, timed_msg(t)) info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)") info(logger, "------------------------------------------------------------") if Interval_dist_to_ΣSq.lo ≤ 0 || !rational return Interval_dist_to_ΣSq else info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...") t = @timed ℚ_dist_to_ΣSq = distance_to_cone(λ_ℚ, Q_ℚω, Δ_ℚ, wlen) info(logger, timed_msg(t)) @assert isa(ℚ_dist_to_ΣSq, Rational) info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_ΣSq,8)))") info(logger, "------------------------------------------------------------") return ℚ_dist_to_ΣSq end end