using JuMP import Base: rationalize function products{T<:Real}(S1::Array{Array{T,2},1}, S2::Array{Array{T,2},1}) result = [0*similar(S1[1])] for x in S1 for y in S2 push!(result, x*y) end end return unique(result[2:end]) end function generate_B₂_and_B₄(identity, S₁) S₂ = unique(products(S₁, S₁)); S₃ = unique(products(S₁, S₂)); S₄ = unique(products(S₂, S₂)); B₂ = unique(vcat([identity],S₁,S₂)); B₄ = unique(vcat(B₂, S₃, S₄)); @assert B₄[1:length(B₂)] == B₂ return B₂, B₄; end function read_GAP_raw_list(filename::String) return eval(parse(String(read(filename)))) end function create_product_matrix(matrix_constraints) l = length(matrix_constraints) product_matrix = zeros(Int, (l, l)) for (index, pairs) in enumerate(matrix_constraints) for (i,j) in pairs product_matrix[i,j] = index end end return product_matrix end function create_product_matrix(basis::Array{Array{Float64,2},1}, limit::Int) product_matrix = zeros(Int, (limit,limit)) constraints = [Array{Int,1}[] for x in 1:length(basis)] for i in 1:limit x_inv = inv(basis[i]) for j in 1:limit w = x_inv*basis[j] index = findfirst(basis, w) if 0 < index ≤ limit product_matrix[i,j] = index push!(constraints[index],[i,j]) end end end return product_matrix, constraints end function Laplacian_sparse(S::Array{Array{Float64,2},1}, basis::Array{Array{Float64,2},1}) squares = unique(vcat([basis[1]], S, products(S,S))) result = spzeros(length(basis)) result[1] = length(S) for s in S ind = find(x -> x==s, basis) result[ind] += -1 end return result end function Laplacian(S::Array{Array{Float64,2},1}, basis:: Array{Array{Float64,2},1}) return full(Laplacian_sparse(S,basis)) end function prepare_Laplacian_and_constraints{T}(S::Vector{Array{T,2}};) identity = eye(S[1]) B₂, B₄ = generate_B₂_and_B₄(identity, S) product_matrix, matrix_constraints = create_product_matrix(B₄,length(B₂)); L= Laplacian(S, B₄); return GroupAlgebraElement(L, product_matrix), matrix_constraints end function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement) N = size(Δ.product_matrix,1) const Δ² = Δ*Δ @assert length(Δ) == length(matrix_constraints) m = Model(); @variable(m, A[1:N, 1:N], SDP) @SDconstraint(m, A >= zeros(size(A))) @variable(m, κ >= 0.0) @objective(m, Max, κ) for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients) @constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ) end return m end function solve_for_property_T{T}(S₁::Vector{Array{T,2}}, solver; verbose=true) Δ, matrix_constraints = prepare_Laplacian_and_constraints(S₁) problem = create_SDP_problem(matrix_constraints, Δ); @show solver setsolver(problem, solver); verbose && @show problem solution_status = solve(problem); verbose && @show solution_status if solution_status != :Optimal throw(ExceptionError("The solver did not solve the problem successfully!")) else κ = SL_3ZZ.objVal; A = getvalue(getvariable(SL_3ZZ, :A));; end return κ, A end function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T) return Δ*Δ - κ*Δ end function resulting_SOS{T<:Number}(sqrt_matrix::Array{T,2}, elt::GroupAlgebraElement{T}) result = zeros(elt.coefficients) zzz = zeros(elt.coefficients) L = size(sqrt_matrix,2) for i in 1:L zzz[1:L] = view(sqrt_matrix, :,i) new_base = GroupAlgebraElement(zzz, elt.product_matrix) result += (new_base*new_base).coefficients end return GroupAlgebraElement{T}(result, elt.product_matrix) end function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2}) sqrt_corrected = similar(sqrt_matrix) l = size(sqrt_matrix,2) for i in 1:l col = view(sqrt_matrix,:,i) sqrt_corrected[:,i] = col - sum(col)//l # @assert sum(sqrt_corrected[:,i]) == 0 end return sqrt_corrected end function check_solution{T<:Number}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}) eoi = EOI(Δ, κ) result = resulting_SOS(sqrt_matrix, Δ) return sum(abs.((result - eoi).coefficients)), sum(result.coefficients) end function rationalize{T<:Integer, S<:Real}(::Type{T}, X::AbstractArray{S}; tol::Real=eps(eltype(X))) r(x) = rationalize(T, x, tol=tol) return r.(X) end