using JuMP import MathProgBase: AbstractMathProgSolver function constraints(pm, total_length=maximum(pm)) n = size(pm,1) constraints = [Vector{Tuple{Int,Int}}() for _ in 1:total_length] for j in 1:n for i in 1:n idx = pm[i,j] push!(constraints[idx], (i,j)) end end return constraints end function splaplacian(RG::GroupRing, S, T::Type=Float64) result = RG(T) result[RG.group()] = T(length(S)) for s in S result[s] -= one(T) end return result end function splaplacian{TT<:Ring}(RG::GroupRing{TT}, S, T::Type=Float64) result = RG(T) result[one(RG.group)] = T(length(S)) for s in S result[s] -= one(T) end return result end function create_SDP_problem(Δ::GroupRingElem, matrix_constraints; upper_bound=Inf) N = size(parent(Δ).pm, 1) Δ² = Δ*Δ @assert length(Δ.coeffs) == length(matrix_constraints) m = JuMP.Model(); JuMP.@variable(m, P[1:N, 1:N]) JuMP.@SDconstraint(m, P >= 0) JuMP.@constraint(m, sum(P[i] for i in eachindex(P)) == 0) if upper_bound < Inf JuMP.@variable(m, 0.0 <= λ <= upper_bound) else JuMP.@variable(m, λ >= 0) end for (pairs, δ², δ) in zip(matrix_constraints, Δ².coeffs, Δ.coeffs) JuMP.@constraint(m, sum(P[i,j] for (i,j) in pairs) == δ² - λ*δ) end JuMP.@objective(m, Max, λ) return m, λ, P end function solve_SDP(SDP_problem) info(LOGGER, Base.repr(SDP_problem)) o = redirect_stdout(LOGGER_SOLVER.handlers["solver_log"].io) Base.Libc.flush_cstdio() @logtime LOGGER solution_status = MathProgBase.optimize!(SDP_problem.internalModel) Base.Libc.flush_cstdio() redirect_stdout(o) if solution_status != :Optimal warn(LOGGER, "The solver did not solve the problem successfully!") end info(LOGGER, solution_status) return 0 end