using ProgressMeter using ValidatedNumerics import Base: rationalize function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T) return Δ*Δ - κ*Δ end function square_as_elt(vector, elt) zzz = zeros(elt.coefficients) zzz[1:length(vector)] = vector # new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix) # return (new_base_elt*new_base_elt).coefficients return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix) end function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2}, elt::GroupAlgebraElement{T}) n = size(sqrt_matrix,2) result = zeros(T, length(elt.coefficients)) p = Progress(n, 1, "Checking SOS decomposition...", 50) for i in 1:n result .+= square_as_elt(sqrt_matrix[:,i], elt) next!(p) end return GroupAlgebraElement{T}(result, elt.product_matrix) end function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2}) sqrt_corrected = similar(sqrt_matrix) l = size(sqrt_matrix,2) for i in 1:l col = view(sqrt_matrix,:,i) sqrt_corrected[:,i] = col - sum(col)//l # @assert sum(sqrt_corrected[:,i]) == 0 end return sqrt_corrected end function check_solution{T<:Number}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}; verbose=true, augmented=false) result = compute_SOS(sqrt_matrix, Δ) if augmented epsilon = GroupAlgebras.ɛ(result) if isa(epsilon, Interval) @assert 0 in epsilon elseif isa(epsilon, Rational) @assert epsilon == 0//1 else warn("Does checking for augmentation has meaning for $(typeof(epsilon))?") end end SOS_diff = EOI(Δ, κ) - result eoi_SOS_L₁_dist = norm(SOS_diff,1) if verbose @show κ ɛ_dist = GroupAlgebras.ɛ(SOS_diff) @printf("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ %.10f\n", ɛ_dist) @printf("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ %.10f\n", eoi_SOS_L₁_dist) end distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist return distance_to_cone end import ValidatedNumerics.± function (±)(X::AbstractArray, tol::Real) r{T}(x::T) = ( x==zero(T) ? @interval(x) : x ± tol) return r.(X) end (±)(X::GroupAlgebraElement, tol::Real) = GroupAlgebraElement(X.coefficients ± tol, X.product_matrix) function Base.rationalize{T<:Integer, S<:Real}(::Type{T}, X::AbstractArray{S}; tol::Real=eps(eltype(X))) r(x) = rationalize(T, x, tol=tol) return r.(X) end ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol) function ℚ_distance_to_positive_cone(Δ::GroupAlgebraElement, κ, A; tol=1e-7, verbose=true, rational=false) isapprox(eigvals(A), abs(eigvals(A)), atol=tol) || warn("The solution matrix doesn't seem to be positive definite!") @assert A == Symmetric(A) A_sqrt = real(sqrtm(A)) # println("") # println("Checking in floating-point arithmetic...") # @time fp_distance = check_solution(κ, A_sqrt, Δ, verbose=verbose) # println("Floating point distance (to positive cone) ≈ $(Float64(trunc(fp_distance,8)))") # println("-------------------------------------------------------------") # println("") # # if fp_distance ≤ 0 # return fp_distance # end println("Checking in interval arithmetic...") A_sqrtᴵ = A_sqrt ± tol κᴵ = κ ± tol Δᴵ = Δ ± tol @time Interval_distance = check_solution(κᴵ, A_sqrtᴵ, Δᴵ, verbose=verbose) # @assert isa(ℚ_distance, Rational) println("The actual distance (to positive cone) is contained in $Interval_distance") println("-------------------------------------------------------------") println("") if Interval_distance.lo ≤ 0 return Interval_distance.lo end println("Projecting columns of A_sqrt to the augmentation ideal...") A_sqrt_ℚ = ℚ(A_sqrt, tol) A_sqrt_ℚ_aug = correct_to_augmentation_ideal(A_sqrt_ℚ) κ_ℚ = ℚ(κ, tol) Δ_ℚ = ℚ(Δ, tol) A_sqrt_ℚ_augᴵ = A_sqrt_ℚ_aug ± tol κᴵ = κ_ℚ ± tol Δᴵ = Δ_ℚ ± tol @time Interval_dist_to_Σ² = check_solution(κᴵ, A_sqrt_ℚ_augᴵ, Δᴵ, verbose=verbose, augmented=true) println("The Augmentation-projected actual distance (to positive cone) is contained in $Interval_dist_to_Σ²") println("-------------------------------------------------------------") println("") if Interval_dist_to_Σ².lo ≤ 0 || !rational return Interval_dist_to_Σ².lo else println("Checking Projected SOS decomposition in exact rational arithmetic...") @time ℚ_dist_to_Σ² = check_solution(κ_ℚ, A_sqrt_ℚ_aug, Δ_ℚ, verbose=verbose, augmented=true) @assert isa(ℚ_dist_to_Σ², Rational) println("Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_Σ²,8)))") println("-------------------------------------------------------------") return ℚ_dist_to_Σ² end end