1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 23:30:26 +01:00
PropertyT.jl/scripts/SpNZ_has_T.jl

83 lines
2.0 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using LinearAlgebra
BLAS.set_num_threads(4)
ENV["OMP_NUM_THREADS"] = 4
include(joinpath(@__DIR__, "../test/optimizers.jl"))
using SCS_MKL_jll
using Groups
import Groups.MatrixGroups
using PropertyT
import PropertyT.SW as SW
using PropertyT.PG
using PropertyT.SA
include(joinpath(@__DIR__, "argparse.jl"))
include(joinpath(@__DIR__, "utils.jl"))
const N = parsed_args["N"]
const HALFRADIUS = parsed_args["halfradius"]
const UPPER_BOUND = parsed_args["upper_bound"]
const GENUS = 2N
G = MatrixGroups.SymplecticGroup{GENUS}(Int8)
@info "Running Δ² - λ·Δ sum of squares decomposition for " G
@info "computing group algebra structure"
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
@info "computing WedderburnDecomposition"
wd = let RG = RG, N = N
G = StarAlgebras.object(RG)
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wdfl = @time SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
)
end
@info wd
Δ = RG(length(S)) - sum(RG(s) for s in S)
elt = Δ^2
unit = Δ
@info "defining optimization problem"
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd;
upper_bound = UPPER_BOUND,
augmented = true,
show_progress = true,
)
solve_in_loop(
model,
wd,
varP;
logdir = "./log/Sp($N,Z)/r=$HALFRADIUS/Δ²-$(UPPER_BOUND)Δ",
optimizer = scs_optimizer(;
linear_solver = SCS.MKLDirectSolver,
eps = 1e-10,
max_iters = 50_000,
accel = 50,
alpha = 1.95,
),
data = (elt = elt, unit = unit, halfradius = HALFRADIUS),
)
if certified && λ > 0
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
else
@info "Could NOT certify the result:" certified λ
end