1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 22:20:28 +01:00
PropertyT.jl/GroupAlgebras.jl

122 lines
4.4 KiB
Julia

module GroupAlgebras
import Base: convert, show, isequal, ==
import Base: +, -, *, //
import Base: size, length, norm
export GroupAlgebraElement
typealias CoordinateVector{T<:Number} AbstractVector{T}
immutable GroupAlgebraElement{T<:CoordinateVector}
coordinates::T
product_matrix::Array{Int,2}
# basis::Array{Any,1}
function GroupAlgebraElement(coordinates::T,
product_matrix::Array{Int,2})
size(product_matrix, 1) == size(product_matrix, 2) ||
throw(ArgumentError("Product matrix has to be square"))
new(coordinates, product_matrix)
end
end
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
GroupAlgebraElement{T}(c::T,pm) = GroupAlgebraElement{T}(c,pm)
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
GroupAlgebraElement(convert(CoordinateVector{T}, X.coordinates), X.product_matrix)
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
"Element of Group Algebra over $(typeofelt(X)), of length $(length(X)):\n", X.coordinates)
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
if T != S
warn("Comparing elements with different coefficients Rings!")
end
X.product_matrix == Y.product_matrix || return false
X.coordinates == Y.coordinates || return false
return true
end
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
function add{T<:CoordinateVector}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
X.product_matrix == Y.product_matrix || throw(ArgumentError(
"Elements don't seem to belong to the same Group Algebra!"))
return GroupAlgebraElement(X.coordinates+Y.coordinates, X.product_matrix)
end
function add{T<:CoordinateVector, S<:CoordinateVector}(X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{S})
warn("Adding elements with different base rings!")
return GroupAlgebraElement(+(promote(X.coordinates, Y.coordinates)...),
X.product_matrix)
end
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coordinates, X.product_matrix)
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
function group_star_multiplication{T<:CoordinateVector}(X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{T})
X.product_matrix == Y.product_matrix || ArgumentError(
"Elements don't seem to belong to the same Group Algebra!")
result = zeros(X.coordinates)
for (i,x) in enumerate(X.coordinates)
if x != 0
for (j,y) in enumerate(Y.coordinates)
if y != 0
index = X.product_matrix[i,j]
if index == 0
throw(ArgumentError("The product don't seem to belong to the span of basis!"))
else
result[index]+= x*y
end
end
end
end
end
return GroupAlgebraElement(result, X.product_matrix)
end
function group_star_multiplication{T<:CoordinateVector, S<:CoordinateVector}(
X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{S})
S == T || warn("Multiplying elements with different base rings!")
return group_star_multiplication(promote(X,Y)...)
end
(*){T<:CoordinateVector, S<:CoordinateVector}(X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
typeofelt{T<:Number}(X::AbstractVector{T}) = T
typeofelt{S<:CoordinateVector}(X::GroupAlgebraElement{S}) = typeofelt(X.coordinates)
function (*){T<:Number, S<:CoordinateVector}(a::T, X::GroupAlgebraElement{S})
W = typeofelt(X)
promote_type(T,W) == W || warn("Scalar and coordinates are in different rings! Promoting result to $(promote_type(T,W))")
return GroupAlgebraElement(a*X.coordinates, X.product_matrix)
end
(*){T<:Number, S<:CoordinateVector}(X::GroupAlgebraElement{S}, a::T) = (*)(a, X)
function rational_division{T<:CoordinateVector, S<:Rational}(X::GroupAlgebraElement{T}, a::S)
if typeofelt(X) <: Rational
return GroupAlgebraElement(X.coordinates//a, X.product_matrix)
else
throw(ArgumentError("Rational division attempt on a GroupAlgebraElement of non-rational coefficients!"))
end
end
(//)(X,a) = rational_division(X,a)
(//){S<:Integer}(X::GroupAlgebraElement, a::S) = //(X, Rational{S}(a))
length(X::GroupAlgebraElement) = length(X.coordinates)
size(X::GroupAlgebraElement) = size(X.coordinates)
norm(X::GroupAlgebraElement, p=2) = norm(X.coordinates, p)
end