1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 22:20:28 +01:00
PropertyT.jl/property(T).jl

112 lines
3.1 KiB
Julia

using JuMP
function products{T<:Real}(S1::Array{Array{T,2},1}, S2::Array{Array{T,2},1})
result = [0*similar(S1[1])]
for x in S1
for y in S2
push!(result, x*y)
end
end
return unique(result[2:end])
end
function read_GAP_raw_list(filename::String)
return eval(parse(String(read(filename))))
end
function create_product_matrix(matrix_constraints)
l = length(matrix_constraints)
product_matrix = zeros(Int, (l, l))
for (index, pairs) in enumerate(matrix_constraints)
for (i,j) in pairs
product_matrix[i,j] = index
end
end
return product_matrix
end
function create_product_matrix(basis::Array{Array{Float64,2},1}, limit::Int)
product_matrix = Array{Int}(limit,limit)
constraints = [Array{Int,1}[] for x in 1:length(basis)]
for i in 1:limit
x_inv = inv(basis[i])
for j in 1:limit
w::Array{Float64,2} = x_inv*basis[j]
function f(x::Array{Float64,2})
if x == w
return true
else
return false
end
end
index = findfirst(f, basis)
product_matrix[i,j] = index
push!(constraints[index],[i,j])
end
end
return product_matrix, constraints
end
function Laplacian_sparse(S::Array{Array{Float64,2},1},
basis::Array{Array{Float64,2},1})
squares = unique(vcat([basis[1]], S, products(S,S)))
result = spzeros(length(basis))
result[1] = length(S)
for s in S
ind = find(x -> x==s, basis)
result[ind] += -1
end
return result
end
function Laplacian(S::Array{Array{Float64,2},1},
basis:: Array{Array{Float64,2},1})
return full(Laplacian_sparse(S,basis))
end
function create_SDP_problem(matrix_constraints,
Δ²::GroupAlgebraElement, Δ::GroupAlgebraElement)
N = size(Δ.product_matrix,1)
@assert length(Δ) == length(Δ²)
@assert length(Δ) == length(matrix_constraints)
m = Model();
@variable(m, A[1:N, 1:N], SDP)
@SDconstraint(m, A >= zeros(size(A)))
@variable(m, κ >= 0.0)
@objective(m, Max, κ)
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coordinates, Δ.coordinates)
@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
end
return m
end
function resulting_SOS{T<:Number}(sqrt_matrix::Array{T,2}, elt::GroupAlgebraElement)
result = zeros(elt.coordinates)
zzz = zeros(elt.coordinates)
L = size(sqrt_matrix,2)
for i in 1:L
zzz[1:L] = view(sqrt_matrix, :,i)
new_base = GroupAlgebraElement(zzz, elt.product_matrix)
result += (new_base*new_base).coordinates
end
return GroupAlgebraElement(result, elt.product_matrix)
end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
sqrt_corrected = similar(sqrt_matrix)
l = size(sqrt_matrix,2)
for i in 1:l
col = view(sqrt_matrix,:,i)
sqrt_corrected[:,i] = col - sum(col)//l
# @assert sum(sqrt_corrected[:,i]) == 0
end
return sqrt_corrected
end