1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-12-25 02:15:29 +01:00
PropertyT.jl/test/1812.03456.jl

256 lines
7.5 KiB
Julia

using SparseArrays
@testset "Sq, Adj, Op" begin
function isconstant_on_orbit(v, orb)
isempty(orb) && return true
k = v[first(orb)]
return all(v[o] == k for o in orb)
end
@testset "unit tests" begin
@test PropertyT.isopposite(perm"(1,2,3)(4)", perm"(1,4,2)")
@test PropertyT.isadjacent(perm"(1,2,3)", perm"(1,2)(3)")
@test !PropertyT.isopposite(perm"(1,2,3)", perm"(1,2)(3)")
@test !PropertyT.isadjacent(perm"(1,4)", perm"(2,3)(4)")
@test isconstant_on_orbit([1, 1, 1, 2, 2], [2, 3])
@test !isconstant_on_orbit([1, 1, 1, 2, 2], [2, 3, 4])
end
@testset "Sq, Adj, Op in SL(4,Z)" begin
N = 4
G = MatrixGroups.SpecialLinearGroup{N}(Int8)
RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true)
Δ = let RG = RG, S = S
RG(length(S)) - sum(RG(s) for s in S)
end
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]),
)
ivs = SymbolicWedderburn.invariant_vectors(wd)
sq, adj, op = PropertyT.SqAdjOp(RG, N)
@test all(
isconstant_on_orbit(sq, SparseArrays.nonzeroinds(iv)) for iv in ivs
)
@test all(
isconstant_on_orbit(adj, SparseArrays.nonzeroinds(iv)) for iv in ivs
)
@test all(
isconstant_on_orbit(op, SparseArrays.nonzeroinds(iv)) for iv in ivs
)
e = one(G)
g = G([alphabet(G)[MatrixGroups.ElementaryMatrix{N}(1, 2, Int8(1))]])
h = G([alphabet(G)[MatrixGroups.ElementaryMatrix{N}(1, 3, Int8(1))]])
k = G([alphabet(G)[MatrixGroups.ElementaryMatrix{N}(3, 4, Int8(1))]])
@test sq[e] == 120
@test sq[g] == sq[h] == -8
@test sq[g^2] == sq[h^2] == 1
@test sq[g*h] == sq[h*g] == 0
@test adj[e] == 384
@test adj[g] == adj[h] == -32
@test adj[g^2] == adj[h^2] == 0
@test adj[g*h] == adj[h*g] == 2
@test adj[k*h] == adj[h*k] == 1
@test op[e] == 96
@test op[g] == op[h] == -8
@test op[g^2] == op[h^2] == 0
@test op[g*h] == op[h*g] == 0
@test op[g*k] == op[k*g] == 2
@test op[h*k] == op[k*h] == 0
end
@testset "SAut(F₃)" begin
n = 3
G = SpecialAutomorphismGroup(FreeGroup(n))
RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true)
sq, adj, op = PropertyT.SqAdjOp(RG, n)
@test sq(one(G)) == 216
@test all(sq(g) == -16 for g in gens(G))
@test adj(one(G)) == 384
@test all(adj(g) == -32 for g in gens(G))
@test iszero(op)
end
end
@testset "1812.03456 examples" begin
@testset "SL(3,Z)" begin
n = 3
G = MatrixGroups.SpecialLinearGroup{n}(Int8)
RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true)
Δ = RG(length(S)) - sum(RG(s) for s in S)
P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]),
)
sq, adj, op = PropertyT.SqAdjOp(RG, n)
@testset "Sq₃ is SOS" begin
elt = sq
UB = Inf # λ ≈ 0.1040844
status, certified, λ_cert = check_positivity(
elt,
Δ,
wd,
upper_bound=UB,
halfradius=2,
optimizer=cosmo_optimizer(accel=50, alpha=1.9)
)
@test status == JuMP.OPTIMAL
@test certified
@test λ_cert > 104 // 1000
end
@testset "Adj₃ is SOS" begin
elt = adj
UB = Inf # λ ≈ 0.15858018
status, certified, λ_cert = check_positivity(
elt,
Δ,
wd,
upper_bound=UB,
halfradius=2,
optimizer=cosmo_optimizer(accel=50, alpha=1.9)
)
@test status == JuMP.OPTIMAL
@test certified
@test λ_cert > 1585 // 10000
m, _ = PropertyT.sos_problem_primal(elt, wd)
PropertyT.solve(
m,
scs_optimizer(max_iters=5000, accel=50, alpha=1.9)
)
@test JuMP.termination_status(m) in (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL, JuMP.ITERATION_LIMIT)
@test abs(JuMP.objective_value(m)) < 1e-3
end
@testset "Op₃ is empty, so can not be certified" begin
elt = op
@test iszero(op)
UB = Inf
status, certified, λ_cert = check_positivity(
elt,
Δ,
wd,
upper_bound=UB,
halfradius=2,
optimizer=cosmo_optimizer(accel=50, alpha=1.9)
)
@test status == JuMP.OPTIMAL
@test !certified
@test λ_cert < 0
end
end
@testset "SL(4,Z)" begin
n = 4
G = MatrixGroups.SpecialLinearGroup{n}(Int8)
RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true)
Δ = RG(length(S)) - sum(RG(s) for s in S)
P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]),
)
sq, adj, op = PropertyT.SqAdjOp(RG, n)
@testset "Sq is SOS" begin
elt = sq
UB = Inf # λ ≈ 0.31670
status, certified, λ_cert = check_positivity(
elt,
Δ,
wd,
upper_bound=UB,
halfradius=2,
optimizer=cosmo_optimizer(accel=50, alpha=1.9)
)
@test status == JuMP.OPTIMAL
@test certified
@test λ_cert > 316 // 1000
end
@testset "Adj is SOS" begin
elt = adj
UB = 0.541 # λ ≈ 0.545710
status, certified, λ_cert = check_positivity(
elt,
Δ,
wd,
upper_bound=UB,
halfradius=2,
optimizer=cosmo_optimizer(accel=50, alpha=1.9)
)
@test status == JuMP.OPTIMAL
@test certified
@test λ_cert > 54 // 100
end
@testset "Op is a sum of squares, but not an order unit" begin
elt = op
UB = Inf
status, certified, λ_cert = check_positivity(
elt,
Δ,
wd,
upper_bound=UB,
halfradius=2,
optimizer=cosmo_optimizer(accel=50, alpha=1.9)
)
@test status == JuMP.OPTIMAL
@test !certified
@test -1e-2 < λ_cert < 0
end
end
end