mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-12-27 18:55:30 +01:00
113 lines
3.4 KiB
Julia
113 lines
3.4 KiB
Julia
@testset "Adj via grading" begin
|
||
@testset "SL(n,Z) & Aut(F₄)" begin
|
||
n = 4
|
||
halfradius = 1
|
||
SL = MatrixGroups.SpecialLinearGroup{n}(Int8)
|
||
RSL, S, sizes = PropertyT.group_algebra(SL; halfradius = halfradius)
|
||
|
||
Δ = RSL(length(S)) - sum(RSL(s) for s in S)
|
||
|
||
Δs = let ψ = identity
|
||
PropertyT.laplacians(
|
||
RSL,
|
||
S,
|
||
x -> (gx = PropertyT.grading(ψ(x)); Set([gx, -gx])),
|
||
)
|
||
end
|
||
|
||
sq, adj, op = PropertyT.SqAdjOp(RSL, n)
|
||
|
||
@test PropertyT.Adj(Δs, :A₁) == sq
|
||
@test PropertyT.Adj(Δs, :A₂) == adj
|
||
@test PropertyT.Adj(Δs, Symbol("A₁×A₁")) == op
|
||
|
||
halfradius = 1
|
||
G = SpecialAutomorphismGroup(FreeGroup(n))
|
||
RG, S, sizes = PropertyT.group_algebra(G; halfradius = halfradius)
|
||
|
||
Δ = RG(length(S)) - sum(RG(s) for s in S)
|
||
|
||
Δs = let ψ = Groups.Homomorphism(Groups._abelianize, G, SL)
|
||
PropertyT.laplacians(
|
||
RG,
|
||
S,
|
||
x -> (gx = PropertyT.grading(ψ(x)); Set([gx, -gx])),
|
||
)
|
||
end
|
||
|
||
sq, adj, op = PropertyT.SqAdjOp(RG, n)
|
||
|
||
@test PropertyT.Adj(Δs, :A₁) == sq
|
||
@test PropertyT.Adj(Δs, :A₂) == adj
|
||
@test PropertyT.Adj(Δs, Symbol("A₁×A₁")) == op
|
||
end
|
||
|
||
@testset "Symplectic group" begin
|
||
@testset "Sp2(ℤ)" begin
|
||
genus = 2
|
||
halfradius = 1
|
||
|
||
SpN = MatrixGroups.SymplecticGroup{2genus}(Int8)
|
||
|
||
RSpN, S_sp, sizes_sp =
|
||
PropertyT.group_algebra(SpN; halfradius = halfradius)
|
||
|
||
Δ, Δs = let RG = RSpN, S = S_sp, ψ = identity
|
||
Δ = RG(length(S)) - sum(RG(s) for s in S)
|
||
Δs = PropertyT.laplacians(
|
||
RG,
|
||
S,
|
||
x -> (gx = PropertyT.grading(ψ(x)); Set([gx, -gx])),
|
||
)
|
||
Δ, Δs
|
||
end
|
||
|
||
sq = sum(Δᵢ^2 for Δᵢ in values(Δs))
|
||
@test PropertyT.Adj(Δs, :C₂) + sq == Δ^2
|
||
end
|
||
|
||
genus = 3
|
||
halfradius = 1
|
||
|
||
SpN = MatrixGroups.SymplecticGroup{2genus}(Int8)
|
||
|
||
RSpN, S_sp, sizes_sp =
|
||
PropertyT.group_algebra(SpN; halfradius = halfradius)
|
||
|
||
Δ, Δs = let RG = RSpN, S = S_sp, ψ = identity
|
||
Δ = RG(length(S)) - sum(RG(s) for s in S)
|
||
Δs = PropertyT.laplacians(
|
||
RG,
|
||
S,
|
||
x -> (gx = PropertyT.grading(ψ(x)); Set([gx, -gx])),
|
||
)
|
||
Δ, Δs
|
||
end
|
||
|
||
@testset "Adj numerics for genus=$genus" begin
|
||
all_subtypes = (
|
||
:A₁,
|
||
:C₁,
|
||
Symbol("A₁×A₁"),
|
||
Symbol("C₁×C₁"),
|
||
Symbol("A₁×C₁"),
|
||
:A₂,
|
||
:C₂,
|
||
)
|
||
|
||
@test PropertyT.Adj(Δs, :A₂)[one(SpN)] == 384
|
||
@test iszero(PropertyT.Adj(Δs, Symbol("A₁×A₁")))
|
||
@test iszero(PropertyT.Adj(Δs, Symbol("C₁×C₁")))
|
||
|
||
@testset "divisibility by 16" begin
|
||
for subtype in all_subtypes
|
||
subtype in (:A₁, :C₁) && continue
|
||
@test isinteger(PropertyT.Adj(Δs, subtype)[one(SpN)] / 16)
|
||
end
|
||
end
|
||
@test sum(PropertyT.Adj(Δs, subtype) for subtype in all_subtypes) ==
|
||
Δ^2
|
||
end
|
||
end
|
||
end
|