mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2025-01-15 07:12:33 +01:00
169 lines
5.6 KiB
Julia
169 lines
5.6 KiB
Julia
countmap(v) = countmap(identity, v)
|
||
function countmap(f, v)
|
||
counts = Dict{eltype(f(first(v))),Int}()
|
||
for x in v
|
||
fx = f(x)
|
||
counts[fx] = get!(counts, fx, 0) + 1
|
||
end
|
||
return counts
|
||
end
|
||
|
||
@testset "classify_root_system" begin
|
||
α = PropertyT.Roots.Root([1, -1, 0])
|
||
β = PropertyT.Roots.Root([0, 1, -1])
|
||
γ = PropertyT.Roots.Root([2, 0, 0])
|
||
|
||
@test PropertyT.Roots.classify_root_system(α, β, (false, false)) == :A₂
|
||
@test PropertyT.Roots.classify_root_system(α, γ, (false, true)) == :C₂
|
||
@test PropertyT.Roots.classify_root_system(β, γ, (false, true)) ==
|
||
Symbol("A₁×C₁")
|
||
end
|
||
|
||
@testset "Exceptional root systems" begin
|
||
@testset "F4" begin
|
||
F4 = let Σ = PermutationGroups.PermGroup(perm"(1,2,3,4)", perm"(1,2)")
|
||
long = let x = (1.0, 1.0, 0.0, 0.0)
|
||
PropertyT.Roots.Root.(
|
||
union(
|
||
(x^g for g in Σ),
|
||
((x .* (-1, 1, 1, 1))^g for g in Σ),
|
||
((-1 .* x)^g for g in Σ),
|
||
),
|
||
)
|
||
end
|
||
|
||
short = let x = (1.0, 0.0, 0.0, 0.0)
|
||
PropertyT.Roots.Root.(
|
||
union((x^g for g in Σ), ((-1 .* x)^g for g in Σ))
|
||
)
|
||
end
|
||
|
||
signs = collect(Iterators.product(fill([-1, +1], 4)...))
|
||
halfs = let x = 1 / 2 .* (1.0, 1.0, 1.0, 1.0)
|
||
PropertyT.Roots.Root.(union(x .* sgn for sgn in signs))
|
||
end
|
||
|
||
union(long, short, halfs)
|
||
end
|
||
|
||
@test length(F4) == 48
|
||
|
||
a = F4[1]
|
||
@test isapprox(length(a), sqrt(2))
|
||
b = F4[6]
|
||
@test isapprox(length(b), sqrt(2))
|
||
c = a + b
|
||
@test isapprox(length(c), 2.0)
|
||
@test PropertyT.Roots.classify_root_system(b, c, (false, true)) == :C₂
|
||
|
||
long = F4[findfirst(r -> length(r) == sqrt(2), F4)]
|
||
short = F4[findfirst(r -> length(r) == 1.0, F4)]
|
||
|
||
subtypes = Set([:C₂, :A₂, Symbol("A₁×C₁")])
|
||
|
||
let Ω = F4, α = long
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
|
||
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:C₂], 6)
|
||
@test r == 0 && d == 3
|
||
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@test r == 0 && d == 4
|
||
end
|
||
|
||
let Ω = F4, α = short
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
|
||
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:C₂], 6)
|
||
@test r == 0 && d == 3
|
||
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@test r == 0 && d == 4
|
||
end
|
||
end
|
||
|
||
@testset "E6-7-8 exceptional root systems" begin
|
||
E8 =
|
||
let Σ = PermutationGroups.PermGroup(
|
||
perm"(1,2,3,4,5,6,7,8)",
|
||
perm"(1,2)",
|
||
)
|
||
long = let x = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
|
||
PropertyT.Roots.Root.(
|
||
union(
|
||
(x^g for g in Σ),
|
||
((x .* (-1, 1, 1, 1, 1, 1, 1, 1))^g for g in Σ),
|
||
((-1 .* x)^g for g in Σ),
|
||
),
|
||
)
|
||
end
|
||
|
||
signs = collect(
|
||
p for p in Iterators.product(fill([-1, +1], 8)...) if
|
||
iseven(count(==(-1), p))
|
||
)
|
||
halfs = let x = 1 / 2 .* ntuple(i -> 1.0, 8)
|
||
rts = unique(PropertyT.Roots.Root(x .* sgn) for sgn in signs)
|
||
end
|
||
|
||
union(long, halfs)
|
||
end
|
||
|
||
subtypes = Set([:A₂, Symbol("A₁×A₁")])
|
||
|
||
@testset "E8" begin
|
||
@test length(E8) == 240
|
||
@test all(r -> length(r) ≈ sqrt(2), E8)
|
||
|
||
let Ω = E8, α = first(Ω)
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
|
||
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@test r == 0 && d == 28
|
||
end
|
||
end
|
||
@testset "E7" begin
|
||
E7 = filter(r -> iszero(sum(r.coord)), E8)
|
||
@test length(E7) == 126
|
||
|
||
let Ω = E7, α = first(Ω)
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
|
||
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@test r == 0 && d == 16
|
||
end
|
||
end
|
||
|
||
@testset "E6" begin
|
||
E6 = filter(
|
||
r -> r.coord[end] == r.coord[end-1] == r.coord[end-2],
|
||
E8,
|
||
)
|
||
@test length(E6) == 72
|
||
|
||
let Ω = E6, α = first(Ω)
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
|
||
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@info d, r
|
||
@test r == 0 && d == 10
|
||
end
|
||
end
|
||
end
|
||
end
|