1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-12-25 02:15:29 +01:00
PropertyT.jl/test/runtests.jl

118 lines
3.5 KiB
Julia

using AbstractAlgebra, Nemo, Groups, SCS
using JLD
using PropertyT
using Test
indexing(n) = [(i,j) for i in 1:n for j in (i+1):n]
function Groups.gens(M::MatSpace)
@assert M.cols == M.rows
N = M.cols
E(i,j) = begin g = M(1); g[i,j] = 1; g end
S = [E(i,j) for (i,j) in indexing(N)]
S = [S; transpose.(S)]
return S
end
solver(iters; accel=1) =
SCSSolver(max_iters=iters, acceleration_lookback=accel, eps=1e-10)
@testset "1703.09680 Examples" begin
@testset "SL(2,Z)" begin
N = 2
G = MatrixSpace(Nemo.ZZ, N,N)
S = Groups.gens(G)
S = [S; inv.(S)]
rm("SL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, solver(20000, accel=20); upper_bound=0.1)
@test PropertyT.check_property_T(sett) == false
end
@testset "SL(3,Z)" begin
N = 3
G = MatrixSpace(Nemo.ZZ, N,N)
S = Groups.gens(G)
S = [S; inv.(S)]
rm("SL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, solver(1000, accel=20); upper_bound=0.1)
@test PropertyT.check_property_T(sett) == true
end
@testset "SAut(F₂)" begin
N = 2
G = SAut(FreeGroup(N))
S = Groups.gens(G)
S = [S; inv.(S)]
rm("SAut(F$N)", recursive=true, force=true)
sett = PropertyT.Settings("SAut(F$N)", G, S, solver(20000);
upper_bound=0.15, warmstart=false)
@test PropertyT.check_property_T(sett) == false
end
end
@testset "1712.07167 Examples" begin
@testset "oSL(3,Z)" begin
N = 3
G = MatrixSpace(Nemo.ZZ, N,N)
S = Groups.gens(G)
S = [S; inv.(S)]
autS = WreathProduct(PermGroup(2), PermGroup(N))
rm("oSL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(2000, accel=20);
upper_bound=0.27, warmstart=false)
@test PropertyT.check_property_T(sett) == false
#second run just checks the solution
@test PropertyT.check_property_T(sett) == false
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(2000, accel=10);
upper_bound=0.27, warmstart=true)
@test PropertyT.check_property_T(sett) == true
end
@testset "oSL(4,Z)" begin
N = 4
G = MatrixSpace(Nemo.ZZ, N,N)
S = Groups.gens(G)
S = [S; inv.(S)]
autS = WreathProduct(PermGroup(2), PermGroup(N))
rm("oSL($N,Z)", recursive=true, force=true)
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(5000, accel=10);
upper_bound=1.3, warmstart=false)
@test PropertyT.check_property_T(sett) == false
#second run just checks the obtained solution
@test PropertyT.check_property_T(sett) == false
sett = PropertyT.Settings("SL($N,Z)", G, S, autS, solver(20000, accel=10);
upper_bound=1.3, warmstart=true)
@test PropertyT.check_property_T(sett) == true
end
@testset "SAut(F₃)" begin
N = 3
G = SAut(FreeGroup(N))
S = Groups.gens(G)
S = [S; inv.(S)]
autS = WreathProduct(PermGroup(2), PermGroup(N))
rm("oSAut(F$N)", recursive=true, force=true)
sett = PropertyT.Settings("SAut(F$N)", G, S, autS, solver(10000);
upper_bound=0.15, warmstart=false)
@test PropertyT.check_property_T(sett) == false
end
end