1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-13 22:05:27 +01:00
PropertyT.jl/scripts/SLNZ_has_T.jl

95 lines
2.3 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using LinearAlgebra
using MKL_jll
BLAS.set_num_threads(4)
ENV["OMP_NUM_THREADS"] = 4
using Groups
import Groups.MatrixGroups
include(joinpath(@__DIR__, "../test/optimizers.jl"))
using PropertyT
using PropertyT.SymbolicWedderburn
using PropertyT.PermutationGroups
using PropertyT.StarAlgebras
include(joinpath(@__DIR__, "argparse.jl"))
const N = parsed_args["N"]
const HALFRADIUS = parsed_args["halfradius"]
const UPPER_BOUND = parsed_args["upper_bound"]
G = MatrixGroups.SpecialLinearGroup{N}(Int8)
@info "Running Δ² - λ·Δ sum of squares decomposition for " G
@info "computing group algebra structure"
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
@info "computing WedderburnDecomposition"
wd = let RG = RG, N = N
G = StarAlgebras.object(RG)
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wdfl = @time SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
)
end
@info wd
Δ = RG(length(S)) - sum(RG(s) for s in S)
elt = Δ^2
unit = Δ
warm = nothing
@info "defining optimization problem"
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd;
upper_bound = UPPER_BOUND,
augmented = true,
)
begin
@time status, warm = PropertyT.solve(
model,
scs_optimizer(;
linear_solver = SCS.MKLDirectSolver,
eps = 1e-10,
max_iters = 20_000,
accel = 50,
alpha = 1.95,
),
warm,
)
@info "reconstructing the solution"
Q = @time let wd = wd, Ps = [JuMP.value.(P) for P in varP]
Qs = real.(sqrt.(Ps))
PropertyT.reconstruct(Qs, wd)
end
@info "certifying the solution"
@time certified, λ = PropertyT.certify_solution(
elt,
unit,
JuMP.objective_value(model),
Q;
halfradius = HALFRADIUS,
augmented = true,
)
end
if certified && λ > 0
Κ(λ, S) = round(sqrt(2λ / length(S)), Base.RoundDown; digits = 5)
@info "Certified result: $G has property (T):" N λ Κ(λ, S)
else
@info "Could NOT certify the result:" certified λ
end