mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-19 15:25:29 +01:00
199 lines
6.1 KiB
Julia
199 lines
6.1 KiB
Julia
using JuMP
|
||
import Base: rationalize
|
||
using GroupAlgebras
|
||
|
||
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
|
||
result = Vector{T}()
|
||
for u in U
|
||
for v in V
|
||
push!(result, u*v)
|
||
end
|
||
end
|
||
return unique(result)
|
||
end
|
||
|
||
function create_product_matrix(basis, limit)
|
||
product_matrix = zeros(Int, (limit,limit))
|
||
for i in 1:limit
|
||
x_inv::eltype(basis) = inv(basis[i])
|
||
for j in 1:limit
|
||
w = x_inv*basis[j]
|
||
index = findfirst(basis, w)
|
||
index ≠ 0 || throw(ArgumentError("Product is not supported on basis: $w"))
|
||
product_matrix[i,j] = index
|
||
end
|
||
end
|
||
return product_matrix
|
||
end
|
||
|
||
function constraints_from_pm(pm, total_length=maximum(pm))
|
||
n = size(pm,1)
|
||
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
|
||
for j in 1:n
|
||
Threads.@threads for i in 1:n
|
||
idx = pm[i,j]
|
||
push!(constraints[idx], [i,j])
|
||
end
|
||
end
|
||
return constraints
|
||
end
|
||
|
||
function splaplacian_coeff(S, basis, n=length(basis))
|
||
result = spzeros(n)
|
||
result[1] = length(S)
|
||
for s in S
|
||
ind = findfirst(basis, s)
|
||
result[ind] += -1
|
||
end
|
||
return result
|
||
end
|
||
|
||
function laplacian_coeff(S, basis)
|
||
return full(splaplacian_coeff(S,basis))
|
||
end
|
||
|
||
|
||
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement)
|
||
N = size(Δ.product_matrix,1)
|
||
const Δ² = Δ*Δ
|
||
@assert length(Δ) == length(matrix_constraints)
|
||
m = JuMP.Model();
|
||
JuMP.@variable(m, A[1:N, 1:N], SDP)
|
||
JuMP.@SDconstraint(m, A >= zeros(size(A)))
|
||
JuMP.@variable(m, κ >= 0.0)
|
||
JuMP.@objective(m, Max, κ)
|
||
|
||
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
|
||
JuMP.@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
|
||
end
|
||
return m
|
||
end
|
||
|
||
function solve_SDP(sdp_constraints, Δ, solver; verbose=true)
|
||
SDP_problem = create_SDP_problem(sdp_constraints, Δ);
|
||
verbose && @show solver
|
||
|
||
JuMP.setsolver(SDP_problem, solver);
|
||
verbose && @show SDP_problem
|
||
# @time MathProgBase.writeproblem(SDP_problem, "/tmp/SDP_problem")
|
||
solution_status = JuMP.solve(SDP_problem);
|
||
verbose && @show solution_status
|
||
|
||
if solution_status != :Optimal
|
||
warn("The solver did not solve the problem successfully!")
|
||
end
|
||
|
||
κ = SDP_problem.objVal;
|
||
A = JuMP.getvalue(JuMP.getvariable(SDP_problem, :A));;
|
||
return κ, A
|
||
end
|
||
|
||
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
|
||
return Δ*Δ - κ*Δ
|
||
end
|
||
|
||
function square_as_elt(vector, elt)
|
||
zzz = zeros(elt.coefficients)
|
||
zzz[1:length(vector)] = vector
|
||
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
|
||
# return (new_base_elt*new_base_elt).coefficients
|
||
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
|
||
end
|
||
|
||
function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2},
|
||
elt::GroupAlgebraElement{T})
|
||
n = size(sqrt_matrix,2)
|
||
# result = zeros(T, length(elt.coefficients))
|
||
result = @parallel (+) for i in 1:n
|
||
square_as_elt(sqrt_matrix[:,i], elt)
|
||
end
|
||
return GroupAlgebraElement{T}(result, elt.product_matrix)
|
||
end
|
||
|
||
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
||
sqrt_corrected = similar(sqrt_matrix)
|
||
l = size(sqrt_matrix,2)
|
||
for i in 1:l
|
||
col = view(sqrt_matrix,:,i)
|
||
sqrt_corrected[:,i] = col - sum(col)//l
|
||
# @assert sum(sqrt_corrected[:,i]) == 0
|
||
end
|
||
return sqrt_corrected
|
||
end
|
||
|
||
function check_solution(κ, sqrt_matrix, Δ; verbose=true, augmented=false)
|
||
result = compute_SOS(sqrt_matrix, Δ)
|
||
if augmented
|
||
@assert GroupAlgebras.ɛ(result) == 0//1
|
||
end
|
||
SOS_diff = EOI(Δ, κ) - result
|
||
|
||
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
||
|
||
if verbose
|
||
@show κ
|
||
if augmented
|
||
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) = ", GroupAlgebras.ɛ(SOS_diff))
|
||
else
|
||
ɛ_dist = Float64(round(GroupAlgebras.ɛ(SOS_diff),12))
|
||
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ $ɛ_dist")
|
||
end
|
||
L₁_dist = Float64(round(eoi_SOS_L₁_dist, 12))
|
||
println("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $L₁_dist")
|
||
end
|
||
|
||
distance_to_cone = 2^3*eoi_SOS_L₁_dist - κ
|
||
return distance_to_cone
|
||
end
|
||
|
||
function rationalize{T<:Integer, S<:Real}(::Type{T},
|
||
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
|
||
r(x) = rationalize(T, x, tol=tol)
|
||
return r.(X)
|
||
end;
|
||
|
||
ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol)
|
||
|
||
|
||
function ℚ_distance_to_positive_cone(Δ::GroupAlgebraElement,
|
||
κ::Float64,
|
||
A::Array{Float64,2};
|
||
tol=10.0^-7,
|
||
verbose=true)
|
||
|
||
@show maximum(A)
|
||
if maximum(A) < 1e-2
|
||
warn("Solver might not solved the problem successfully and the positive solution is due to floating-point error, proceeding anyway...")
|
||
end
|
||
|
||
@assert isapprox(eigvals(A), abs(eigvals(A)), atol=TOL)
|
||
@assert A == Symmetric(A)
|
||
A_sqrt = real(sqrtm(A))
|
||
println("")
|
||
|
||
println("Checking in floating-point arithmetic...")
|
||
fp_distance = check_solution(κ, A_sqrt, Δ, verbose=VERBOSE)
|
||
println("Distance to positive cone ≈ $(Float64(trunc(fp_distance,8)))")
|
||
println("-------------------------------------------------------------")
|
||
println("")
|
||
|
||
println("Checking in rational arithmetic...")
|
||
κ_ℚ = ℚ(trunc(κ,Int(abs(log10(tol)))), TOL)
|
||
@assert κ - κ_ℚ ≥ 0
|
||
A_sqrt_ℚ, Δ_ℚ = ℚ(A_sqrt, TOL), ℚ(Δ, TOL)
|
||
ℚ_distance = check_solution(κ_ℚ, A_sqrt_ℚ, Δ_ℚ, verbose=VERBOSE)
|
||
@assert isa(ℚ_distance, Rational)
|
||
println("Distance to positive cone ≈ $(Float64(trunc(ℚ_distance,8)))")
|
||
println("-------------------------------------------------------------")
|
||
println("")
|
||
|
||
println("Projecting columns of A_sqrt to the augmentation ideal...")
|
||
A_sqrt_ℚ_aug = correct_to_augmentation_ideal(A_sqrt_ℚ)
|
||
ℚ_dist_to_Σ² = check_solution(κ_ℚ, A_sqrt_ℚ_aug, Δ_ℚ, verbose=VERBOSE, augmented=true)
|
||
@assert isa(ℚ_dist_to_Σ², Rational)
|
||
s = (ℚ_dist_to_Σ² < 0? "≤": "≥")
|
||
println("Distance to positive cone $s $(Float64(trunc(ℚ_dist_to_Σ²,8)))")
|
||
|
||
return ℚ_dist_to_Σ²
|
||
end
|