1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 14:15:28 +01:00
PropertyT.jl/test/1712.07167.jl

241 lines
6.9 KiB
Julia

function check_positivity(elt, unit, wd; upper_bound=Inf, halfradius=2, optimizer)
@assert aug(elt) == aug(unit) == 0
@time sos_problem, Ps =
PropertyT.sos_problem_primal(elt, unit, wd, upper_bound=upper_bound)
@time status, _ = PropertyT.solve(sos_problem, optimizer)
Q = let Ps = Ps
flPs = [real.(sqrt(JuMP.value.(P))) for P in Ps]
PropertyT.reconstruct(flPs, wd)
end
λ = JuMP.value(sos_problem[])
sos = let RG = parent(elt), Q = Q
z = zeros(eltype(Q), length(basis(RG)))
res = AlgebraElement(z, RG)
cnstrs = PropertyT.constraints(basis(RG), RG.mstructure, augmented=true)
PropertyT._cnstr_sos!(res, Q, cnstrs)
end
residual = elt - λ * unit - sos
λ_fl = PropertyT.sufficient_λ(residual, λ, halfradius=2)
λ_fl < 0 && return status, false, λ_fl
sos = let RG = parent(elt), Q = [PropertyT.IntervalArithmetic.@interval(q) for q in Q]
z = zeros(eltype(Q), length(basis(RG)))
res = AlgebraElement(z, RG)
cnstrs = PropertyT.constraints(basis(RG), RG.mstructure, augmented=true)
PropertyT._cnstr_sos!(res, Q, cnstrs)
end
λ_int = PropertyT.IntervalArithmetic.@interval(λ)
residual_int = elt - λ_int * unit - sos
λ_int = PropertyT.sufficient_λ(residual_int, λ_int, halfradius=2)
return status, λ_int > 0, PropertyT.IntervalArithmetic.inf(λ_int)
end
@testset "1712.07167 Examples" begin
@testset "SAut(F₃)" begin
N = 3
G = SpecialAutomorphismGroup(FreeGroup(N))
RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true)
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wd = WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[2]]),
)
Δ = let RG = RG, S = S
RG(length(S)) - sum(RG(s) for s in S)
end
elt = Δ^2
unit = Δ
ub = Inf
status, certified, λ_cert = check_positivity(
elt,
unit,
wd,
upper_bound=ub,
halfradius=2,
optimizer=cosmo_optimizer(
eps=1e-7,
max_iters=10_000,
accel=50,
alpha=1.9,
),
)
@test status == JuMP.OPTIMAL
@test !certified
@test λ_cert < 0
end
@testset "SL(3,Z) has (T)" begin
n = 3
SL = MatrixGroups.SpecialLinearGroup{n}(Int8)
RSL, S, sizes = PropertyT.group_algebra(SL, halfradius=2, twisted=true)
Δ = RSL(length(S)) - sum(RSL(s) for s in S)
@testset "Wedderburn formulation" begin
P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(SL, Σ)
wd = WedderburnDecomposition(
Rational{Int},
Σ,
act,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]),
)
elt = Δ^2
unit = Δ
ub = 0.2801
@test_throws ErrorException PropertyT.sos_problem_primal(
elt,
unit,
wd,
upper_bound=ub,
augmented=false,
)
wdfl = SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]),
)
model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wdfl,
upper_bound=ub,
augmented=false,
)
status, warm = PropertyT.solve(
model,
cosmo_optimizer(
eps=1e-10,
max_iters=20_000,
accel=50,
alpha=1.9,
),
)
@test status == JuMP.OPTIMAL
status, _ = PropertyT.solve(
model,
scs_optimizer(
eps=1e-10,
max_iters=100,
accel=-20,
alpha=1.2,
),
warm
)
@test status == JuMP.OPTIMAL
Q = @time let varP = varP
Qs = map(varP) do P
real.(sqrt(JuMP.value.(P)))
end
PropertyT.reconstruct(Qs, wdfl)
end
λ = JuMP.value(model[])
sos = PropertyT.compute_sos(parent(elt), Q; augmented=false)
certified, λ_cert = PropertyT.certify_solution(
elt,
unit,
λ,
Q,
halfradius=2,
augmented=false,
)
@test certified
@test λ_cert >= 28 // 100
end
@testset "augmented Wedderburn formulation" begin
elt = Δ^2
unit = Δ
ub = Inf
P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
Σ = PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(SL, Σ)
wdfl = SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RSL),
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]]),
)
opt_problem, varP = PropertyT.sos_problem_primal(
elt,
unit,
wdfl,
upper_bound=ub,
# augmented = true # since both elt and unit are augmented
)
status, _ = PropertyT.solve(
opt_problem,
scs_optimizer(
eps=1e-8,
max_iters=20_000,
accel=0,
alpha=1.9,
),
)
@test status == JuMP.OPTIMAL
Q = @time let varP = varP
Qs = map(varP) do P
real.(sqrt(JuMP.value.(P)))
end
PropertyT.reconstruct(Qs, wdfl)
end
certified, λ_cert = PropertyT.certify_solution(
elt,
unit,
JuMP.objective_value(opt_problem),
Q,
halfradius=2,
# augmented = true # since both elt and unit are augmented
)
@test certified
@test λ_cert > 28 // 100
end
end
end