mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-14 14:15:28 +01:00
367 lines
12 KiB
Julia
367 lines
12 KiB
Julia
using JuMP
|
||
import MathProgBase: AbstractMathProgSolver
|
||
import Base: rationalize
|
||
using GroupAlgebras
|
||
|
||
using ProgressMeter
|
||
using ValidatedNumerics
|
||
|
||
function create_product_matrix(basis, limit)
|
||
product_matrix = zeros(Int, (limit,limit))
|
||
basis_dict = Dict{Array, Int}(x => i
|
||
for (i,x) in enumerate(basis))
|
||
for i in 1:limit
|
||
x_inv::eltype(basis) = inv(basis[i])
|
||
for j in 1:limit
|
||
w = x_inv*basis[j]
|
||
product_matrix[i,j] = basis_dict[w]
|
||
# index = findfirst(basis, w)
|
||
# index ≠ 0 || throw(ArgumentError("Product is not supported on basis: $w"))
|
||
# product_matrix[i,j] = index
|
||
end
|
||
end
|
||
return product_matrix
|
||
end
|
||
|
||
function constraints_from_pm(pm, total_length=maximum(pm))
|
||
n = size(pm,1)
|
||
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
|
||
for j in 1:n
|
||
Threads.@threads for i in 1:n
|
||
idx = pm[i,j]
|
||
push!(constraints[idx], [i,j])
|
||
end
|
||
end
|
||
return constraints
|
||
end
|
||
|
||
function splaplacian_coeff(S, basis, n=length(basis))
|
||
result = spzeros(n)
|
||
result[1] = float(length(S))
|
||
for s in S
|
||
ind = findfirst(basis, s)
|
||
result[ind] += -1.0
|
||
end
|
||
return result
|
||
end
|
||
|
||
function laplacian_coeff(S, basis)
|
||
return full(splaplacian_coeff(S,basis))
|
||
end
|
||
|
||
|
||
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement; upper_bound=Inf)
|
||
N = size(Δ.product_matrix,1)
|
||
const Δ² = Δ*Δ
|
||
@assert length(Δ) == length(matrix_constraints)
|
||
m = JuMP.Model();
|
||
JuMP.@variable(m, A[1:N, 1:N], SDP)
|
||
JuMP.@SDconstraint(m, A >= 0)
|
||
JuMP.@constraint(m, sum(A[i] for i in eachindex(A)) == 0)
|
||
JuMP.@variable(m, κ >= 0.0)
|
||
if upper_bound < Inf
|
||
JuMP.@constraint(m, κ <= upper_bound)
|
||
end
|
||
JuMP.@objective(m, Max, κ)
|
||
|
||
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
|
||
JuMP.@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
|
||
end
|
||
return m
|
||
end
|
||
|
||
function solve_SDP(SDP_problem, solver)
|
||
@show SDP_problem
|
||
@show solver
|
||
|
||
JuMP.setsolver(SDP_problem, solver);
|
||
# @time MathProgBase.writeproblem(SDP_problem, "/tmp/SDP_problem")
|
||
solution_status = JuMP.solve(SDP_problem);
|
||
|
||
if solution_status != :Optimal
|
||
warn("The solver did not solve the problem successfully!")
|
||
end
|
||
@show solution_status
|
||
|
||
κ = JuMP.getvalue(JuMP.getvariable(SDP_problem, :κ))
|
||
A = JuMP.getvalue(JuMP.getvariable(SDP_problem, :A))
|
||
return κ, A
|
||
end
|
||
|
||
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
|
||
return Δ*Δ - κ*Δ
|
||
end
|
||
|
||
function square_as_elt(vector, elt)
|
||
zzz = zeros(elt.coefficients)
|
||
zzz[1:length(vector)] = vector
|
||
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
|
||
# return (new_base_elt*new_base_elt).coefficients
|
||
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
|
||
end
|
||
|
||
function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2},
|
||
elt::GroupAlgebraElement{T})
|
||
n = size(sqrt_matrix,2)
|
||
result = zeros(T, length(elt.coefficients))
|
||
p = Progress(n, 1, "Checking SOS decomposition...", 50)
|
||
for i in 1:n
|
||
result .+= square_as_elt(sqrt_matrix[:,i], elt)
|
||
next!(p)
|
||
end
|
||
return GroupAlgebraElement{T}(result, elt.product_matrix)
|
||
end
|
||
|
||
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
||
sqrt_corrected = similar(sqrt_matrix)
|
||
l = size(sqrt_matrix,2)
|
||
for i in 1:l
|
||
col = view(sqrt_matrix,:,i)
|
||
sqrt_corrected[:,i] = col - sum(col)//l
|
||
# @assert sum(sqrt_corrected[:,i]) == 0
|
||
end
|
||
return sqrt_corrected
|
||
end
|
||
|
||
function check_solution{T<:Number}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}; verbose=true, augmented=false)
|
||
result = compute_SOS(sqrt_matrix, Δ)
|
||
if augmented
|
||
epsilon = GroupAlgebras.ɛ(result)
|
||
if isa(epsilon, Interval)
|
||
@assert 0 in epsilon
|
||
elseif isa(epsilon, Rational)
|
||
@assert epsilon == 0//1
|
||
else
|
||
warn("Does checking for augmentation has meaning for $(typeof(epsilon))?")
|
||
end
|
||
end
|
||
SOS_diff = EOI(Δ, κ) - result
|
||
|
||
eoi_SOS_L₁_dist = norm(SOS_diff,1)
|
||
|
||
if verbose
|
||
@show κ
|
||
if augmented
|
||
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) = ", GroupAlgebras.ɛ(SOS_diff))
|
||
else
|
||
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
|
||
if typeof(ɛ_dist) <: Interval
|
||
ɛ_dist = ɛ_dist.lo
|
||
end
|
||
@printf("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ %.10f\n", ɛ_dist)
|
||
end
|
||
|
||
L₁_dist = eoi_SOS_L₁_dist
|
||
if typeof(L₁_dist) <: Interval
|
||
L₁_dist = L₁_dist.lo
|
||
end
|
||
@printf("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ %.10f\n", L₁_dist)
|
||
end
|
||
|
||
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
|
||
return distance_to_cone
|
||
end
|
||
|
||
import ValidatedNumerics.±
|
||
function (±)(X::AbstractArray, tol::Real)
|
||
r{T}(x::T) = ( x==zero(T) ? @interval(x) : x ± tol)
|
||
return r.(X)
|
||
end
|
||
|
||
(±)(X::GroupAlgebraElement, tol::Real) = GroupAlgebraElement(X.coefficients ± tol, X.product_matrix)
|
||
|
||
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
|
||
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
|
||
r(x) = rationalize(T, x, tol=tol)
|
||
return r.(X)
|
||
end
|
||
|
||
ℚ(x, tol::Real) = rationalize(BigInt, x, tol=tol)
|
||
|
||
|
||
function ℚ_distance_to_positive_cone(Δ::GroupAlgebraElement, κ, A;
|
||
tol=1e-7, verbose=true, rational=false)
|
||
|
||
isapprox(eigvals(A), abs(eigvals(A)), atol=tol) ||
|
||
warn("The solution matrix doesn't seem to be positive definite!")
|
||
@assert A == Symmetric(A)
|
||
A_sqrt = real(sqrtm(A))
|
||
|
||
# println("")
|
||
# println("Checking in floating-point arithmetic...")
|
||
# @time fp_distance = check_solution(κ, A_sqrt, Δ, verbose=verbose)
|
||
# println("Floating point distance (to positive cone) ≈ $(Float64(trunc(fp_distance,8)))")
|
||
# println("-------------------------------------------------------------")
|
||
# println("")
|
||
#
|
||
# if fp_distance ≤ 0
|
||
# return fp_distance
|
||
# end
|
||
|
||
println("Checking in interval arithmetic...")
|
||
A_sqrtᴵ = A_sqrt ± tol
|
||
κᴵ = κ ± tol
|
||
Δᴵ = Δ ± tol
|
||
@time Interval_distance = check_solution(κᴵ, A_sqrtᴵ, Δᴵ, verbose=verbose)
|
||
# @assert isa(ℚ_distance, Rational)
|
||
println("The actual distance (to positive cone) is contained in $Interval_distance")
|
||
println("-------------------------------------------------------------")
|
||
println("")
|
||
|
||
if Interval_distance.lo ≤ 0
|
||
return Interval_distance.lo
|
||
end
|
||
|
||
println("Projecting columns of A_sqrt to the augmentation ideal...")
|
||
A_sqrt_ℚ = ℚ(A_sqrt, tol)
|
||
A_sqrt_ℚ_aug = correct_to_augmentation_ideal(A_sqrt_ℚ)
|
||
κ_ℚ = ℚ(κ, tol)
|
||
Δ_ℚ = ℚ(Δ, tol)
|
||
|
||
A_sqrt_ℚ_augᴵ = A_sqrt_ℚ_aug ± tol
|
||
κᴵ = κ_ℚ ± tol
|
||
Δᴵ = Δ_ℚ ± tol
|
||
@time Interval_dist_to_Σ² = check_solution(κᴵ, A_sqrt_ℚ_augᴵ, Δᴵ, verbose=verbose, augmented=true)
|
||
println("The Augmentation-projected actual distance (to positive cone) is contained in $Interval_dist_to_Σ²")
|
||
println("-------------------------------------------------------------")
|
||
println("")
|
||
|
||
if Interval_dist_to_Σ².lo ≤ 0 || !rational
|
||
return Interval_dist_to_Σ².lo
|
||
else
|
||
|
||
println("Checking Projected SOS decomposition in exact rational arithmetic...")
|
||
@time ℚ_dist_to_Σ² = check_solution(κ_ℚ, A_sqrt_ℚ_aug, Δ_ℚ, verbose=verbose, augmented=true)
|
||
@assert isa(ℚ_dist_to_Σ², Rational)
|
||
println("Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(ℚ_dist_to_Σ²,8)))")
|
||
println("-------------------------------------------------------------")
|
||
return ℚ_dist_to_Σ²
|
||
end
|
||
end
|
||
|
||
function pmΔfilenames(name::String)
|
||
if !isdir(name)
|
||
mkdir(name)
|
||
end
|
||
prefix = name
|
||
pm_filename = joinpath(prefix, "product_matrix.jld")
|
||
Δ_coeff_filename = joinpath(prefix, "delta.coefficients.jld")
|
||
return pm_filename, Δ_coeff_filename
|
||
end
|
||
|
||
function κSDPfilenames(name::String)
|
||
if !isdir(name)
|
||
mkdir(name)
|
||
end
|
||
prefix = name
|
||
κ_filename = joinpath(prefix, "kappa.jld")
|
||
SDP_filename = joinpath(prefix, "SDPmatrixA.jld")
|
||
return κ_filename, SDP_filename
|
||
end
|
||
|
||
function ΔandSDPconstraints(name::String)
|
||
pm_fname, Δ_fname = pmΔfilenames(name)
|
||
f₁ = isfile(pm_fname)
|
||
f₂ = isfile(Δ_fname)
|
||
if f₁ && f₂
|
||
println("Loading precomputed pm, Δ, sdp_constraints...")
|
||
product_matrix = load(pm_fname, "pm")
|
||
L = load(Δ_fname, "Δ")[:, 1]
|
||
Δ = GroupAlgebraElement(L, Array{Int,2}(product_matrix))
|
||
sdp_constraints = constraints_from_pm(product_matrix)
|
||
else
|
||
throw(ArgumentError("You need to precompute pm and Δ to load it!"))
|
||
end
|
||
return Δ, sdp_constraints
|
||
end
|
||
|
||
function ΔandSDPconstraints(name::String, ID, generating_func::Function)
|
||
pm_fname, Δ_fname = pmΔfilenames(name)
|
||
Δ, sdp_constraints = ΔandSDPconstraints(ID, generating_func())
|
||
save(pm_fname, "pm", Δ.product_matrix)
|
||
save(Δ_fname, "Δ", Δ.coefficients)
|
||
return Δ, sdp_constraints
|
||
end
|
||
|
||
function κandA(name::String)
|
||
κ_fname, SDP_fname = κSDPfilenames(name)
|
||
f₁ = isfile(κ_fname)
|
||
f₂ = isfile(SDP_fname)
|
||
if f₁ && f₂
|
||
println("Loading precomputed κ, A...")
|
||
κ = load(κ_fname, "κ")
|
||
A = load(SDP_fname, "A")
|
||
else
|
||
throw(ArgumentError("You need to precompute κ and SDP matrix A to load it!"))
|
||
end
|
||
return κ, A
|
||
end
|
||
|
||
function κandA(name::String, sdp_constraints, Δ::GroupAlgebraElement, solver::AbstractMathProgSolver; upper_bound=Inf)
|
||
println("Creating SDP problem...")
|
||
@time SDP_problem = create_SDP_problem(sdp_constraints, Δ; upper_bound=upper_bound)
|
||
println("Solving SDP problem maximizing κ...")
|
||
κ, A = solve_SDP(SDP_problem, solver)
|
||
κ_fname, A_fname = κSDPfilenames(name)
|
||
if κ > 0
|
||
save(κ_fname, "κ", κ)
|
||
save(A_fname, "A", A)
|
||
else
|
||
throw(ErrorException("Solver $solver did not produce a valid solution!: κ = $κ"))
|
||
end
|
||
return κ, A
|
||
end
|
||
|
||
function check_property_T(name::String, ID, generate_B₄::Function;
|
||
verbose=true, tol=1e-6, upper_bound=Inf)
|
||
|
||
# solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=!verbose)
|
||
solver = SCSSolver(eps=tol, max_iters=100000, verbose=verbose)
|
||
|
||
@show name
|
||
@show verbose
|
||
@show tol
|
||
|
||
|
||
Δ, sdp_constraints = try
|
||
ΔandSDPconstraints(name)
|
||
catch err
|
||
if isa(err, ArgumentError)
|
||
ΔandSDPconstraints(name, ID, generate_B₄)
|
||
else
|
||
throw(err)
|
||
end
|
||
end
|
||
println("|S| = $(countnz(Δ.coefficients) -1)")
|
||
@show length(Δ)
|
||
@show size(Δ.product_matrix)
|
||
|
||
κ, A = try
|
||
κandA(name)
|
||
catch err
|
||
if isa(err, ArgumentError)
|
||
κandA(name, sdp_constraints, Δ, solver; upper_bound=upper_bound)
|
||
else
|
||
throw(err)
|
||
end
|
||
end
|
||
|
||
@show κ
|
||
@show sum(A)
|
||
@show maximum(A)
|
||
@show minimum(A)
|
||
|
||
if κ > 0
|
||
|
||
true_kappa = ℚ_distance_to_positive_cone(Δ, κ, A, tol=tol, verbose=verbose, rational=true)
|
||
true_kappa = Float64(trunc(true_kappa,12))
|
||
if true_kappa > 0
|
||
println("κ($name, S) ≥ $true_kappa: Group HAS property (T)!")
|
||
else
|
||
println("κ($name, S) ≥ $true_kappa: Group may NOT HAVE property (T)!")
|
||
end
|
||
else
|
||
println("κ($name, S) ≥ $κ < 0: Tells us nothing about property (T)")
|
||
end
|
||
end
|