mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-14 14:15:28 +01:00
211 lines
6.2 KiB
Julia
211 lines
6.2 KiB
Julia
function test_action(basis, group, act)
|
||
action = SymbolicWedderburn.action
|
||
return @testset "action definition" begin
|
||
@test all(basis) do b
|
||
e = one(group)
|
||
action(act, e, b) == b
|
||
end
|
||
|
||
a = let a = rand(basis)
|
||
while isone(a)
|
||
a = rand(basis)
|
||
end
|
||
@assert !isone(a)
|
||
a
|
||
end
|
||
|
||
g, h = let g_h = rand(group, 2)
|
||
while any(isone, g_h)
|
||
g_h = rand(group, 2)
|
||
end
|
||
@assert all(!isone, g_h)
|
||
g_h
|
||
end
|
||
|
||
action = SymbolicWedderburn.action
|
||
@test action(act, g, a) in basis
|
||
@test action(act, h, a) in basis
|
||
@test action(act, h, action(act, g, a)) == action(act, g * h, a)
|
||
|
||
@test all([(g, h) for g in group for h in group]) do (g, h)
|
||
x = action(act, h, action(act, g, a))
|
||
y = action(act, g * h, a)
|
||
x == y
|
||
end
|
||
|
||
if act isa SymbolicWedderburn.ByPermutations
|
||
@test all(basis) do b
|
||
action(act, g, b) ∈ basis && action(act, h, b) ∈ basis
|
||
end
|
||
end
|
||
end
|
||
end
|
||
|
||
## Testing
|
||
|
||
@testset "Actions on SL(3,ℤ)" begin
|
||
|
||
n = 3
|
||
|
||
SL = MatrixGroups.SpecialLinearGroup{n}(Int8)
|
||
RSL, S, sizes = PropertyT.group_algebra(SL, halfradius=2, twisted=true)
|
||
|
||
@testset "Permutation action" begin
|
||
|
||
Γ = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
|
||
ΓpA = PropertyT.action_by_conjugation(SL, Γ)
|
||
|
||
test_action(basis(RSL), Γ, ΓpA)
|
||
|
||
@testset "mps is successful" begin
|
||
|
||
charsΓ =
|
||
SymbolicWedderburn.Character{
|
||
Rational{Int},
|
||
}.(SymbolicWedderburn.irreducible_characters(Γ))
|
||
|
||
RΓ = SymbolicWedderburn._group_algebra(Γ)
|
||
|
||
@time mps, simple =
|
||
SymbolicWedderburn.minimal_projection_system(charsΓ, RΓ)
|
||
@test all(simple)
|
||
end
|
||
|
||
@testset "Wedderburn decomposition" begin
|
||
wd = SymbolicWedderburn.WedderburnDecomposition(
|
||
Rational{Int},
|
||
Γ,
|
||
ΓpA,
|
||
basis(RSL),
|
||
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]])
|
||
)
|
||
|
||
@test length(invariant_vectors(wd)) == 918
|
||
@test SymbolicWedderburn.size.(direct_summands(wd), 1) == [40, 23, 18]
|
||
@test all(issimple, direct_summands(wd))
|
||
end
|
||
end
|
||
|
||
@testset "Wreath action" begin
|
||
|
||
Γ = let P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
|
||
PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
|
||
end
|
||
|
||
ΓpA = PropertyT.action_by_conjugation(SL, Γ)
|
||
|
||
test_action(basis(RSL), Γ, ΓpA)
|
||
|
||
@testset "mps is successful" begin
|
||
|
||
charsΓ =
|
||
SymbolicWedderburn.Character{
|
||
Rational{Int},
|
||
}.(SymbolicWedderburn.irreducible_characters(Γ))
|
||
|
||
RΓ = SymbolicWedderburn._group_algebra(Γ)
|
||
|
||
@time mps, simple =
|
||
SymbolicWedderburn.minimal_projection_system(charsΓ, RΓ)
|
||
@test all(simple)
|
||
end
|
||
|
||
@testset "Wedderburn decomposition" begin
|
||
wd = SymbolicWedderburn.WedderburnDecomposition(
|
||
Rational{Int},
|
||
Γ,
|
||
ΓpA,
|
||
basis(RSL),
|
||
StarAlgebras.Basis{UInt16}(@view basis(RSL)[1:sizes[2]])
|
||
)
|
||
|
||
@test length(invariant_vectors(wd)) == 247
|
||
@test SymbolicWedderburn.size.(direct_summands(wd), 1) == [14, 9, 6, 14, 12]
|
||
@test all(issimple, direct_summands(wd))
|
||
end
|
||
end
|
||
end
|
||
|
||
@testset "Actions on SAut(F4)" begin
|
||
|
||
n = 4
|
||
|
||
SAutFn = SpecialAutomorphismGroup(FreeGroup(n))
|
||
RSAutFn, S, sizes = PropertyT.group_algebra(SAutFn, halfradius=1, twisted=true)
|
||
|
||
@testset "Permutation action" begin
|
||
|
||
Γ = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
|
||
ΓpA = PropertyT.action_by_conjugation(SAutFn, Γ)
|
||
|
||
test_action(basis(RSAutFn), Γ, ΓpA)
|
||
|
||
@testset "mps is successful" begin
|
||
|
||
charsΓ =
|
||
SymbolicWedderburn.Character{
|
||
Rational{Int},
|
||
}.(SymbolicWedderburn.irreducible_characters(Γ))
|
||
|
||
RΓ = SymbolicWedderburn._group_algebra(Γ)
|
||
|
||
@time mps, simple =
|
||
SymbolicWedderburn.minimal_projection_system(charsΓ, RΓ)
|
||
@test all(simple)
|
||
end
|
||
|
||
@testset "Wedderburn decomposition" begin
|
||
wd = SymbolicWedderburn.WedderburnDecomposition(
|
||
Rational{Int},
|
||
Γ,
|
||
ΓpA,
|
||
basis(RSAutFn),
|
||
StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]])
|
||
)
|
||
|
||
@test length(invariant_vectors(wd)) == 93
|
||
@test SymbolicWedderburn.size.(direct_summands(wd), 1) == [4, 8, 5, 4]
|
||
@test all(issimple, direct_summands(wd))
|
||
end
|
||
end
|
||
|
||
@testset "Wreath action" begin
|
||
|
||
Γ = let P = PermGroup(perm"(1,2)", Perm(circshift(1:n, -1)))
|
||
PropertyT.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
|
||
end
|
||
|
||
ΓpA = PropertyT.action_by_conjugation(SAutFn, Γ)
|
||
|
||
test_action(basis(RSAutFn), Γ, ΓpA)
|
||
|
||
@testset "mps is successful" begin
|
||
|
||
charsΓ =
|
||
SymbolicWedderburn.Character{
|
||
Rational{Int},
|
||
}.(SymbolicWedderburn.irreducible_characters(Γ))
|
||
|
||
RΓ = SymbolicWedderburn._group_algebra(Γ)
|
||
|
||
@time mps, simple =
|
||
SymbolicWedderburn.minimal_projection_system(charsΓ, RΓ)
|
||
@test all(simple)
|
||
end
|
||
|
||
@testset "Wedderburn decomposition" begin
|
||
wd = SymbolicWedderburn.WedderburnDecomposition(
|
||
Rational{Int},
|
||
Γ,
|
||
ΓpA,
|
||
basis(RSAutFn),
|
||
StarAlgebras.Basis{UInt16}(@view basis(RSAutFn)[1:sizes[1]])
|
||
)
|
||
|
||
@test length(invariant_vectors(wd)) == 18
|
||
@test SymbolicWedderburn.size.(direct_summands(wd), 1) == [1, 1, 2, 2, 1, 2, 2, 1]
|
||
@test all(issimple, direct_summands(wd))
|
||
end
|
||
end
|
||
end
|