PropertyT.jl/src/Projections.jl

216 lines
6.1 KiB
Julia

###############################################################################
#
# Characters of Symmetric Group and DirectProduct
#
###############################################################################
abstract AbstractCharacter <: Function
immutable PermCharacter <: AbstractCharacter
p::Partition
end
immutable DirectProdCharacter <: AbstractCharacter
i::Int
end
function (chi::PermCharacter)(g::Nemo.perm)
R = Nemo.partitionseq(chi.p)
p = Partition(Nemo.permtype(g))
return Int(Nemo.MN1inner(R, p, 1, Nemo._charvalsTable))
end
## NOTE: this works only for Z/2!!!!
function (chi::DirectProdCharacter)(g::DirectProductGroupElem)
return reduce(*, 1, ((-1)^isone(g.elts[j]) for j in 1:chi.i))
end
for T in [PermCharacter, DirectProdCharacter]
@eval begin
function (chi::$T)(X::GroupRingElem)
RG = parent(X)
z = zero(eltype(X))
result = z
for i in 1:length(X.coeffs)
if X.coeffs[i] != z
result += chi(RG.basis[i])*X.coeffs[i]
end
end
return result
end
end
end
###############################################################################
#
# Projections
#
###############################################################################
function central_projection(RG::GroupRing, chi::AbstractCharacter,
T::Type=Rational{Int})
result = RG(T)
result.coeffs = full(result.coeffs)
dim = chi(RG.group())
ord = Int(order(RG.group))
for g in RG.basis
result[g] = convert(T, (dim//ord)*chi(g))
end
return result
end
function idempotents(RG::GroupRing{PermGroup}, T::Type=Rational{Int})
if RG.group.n == 1
return GroupRingElem{T}[one(RG,T)]
elseif RG.group.n == 2
Id = one(RG,T)
transp = convert(T, RG(RG.group([2,1])))
return GroupRingElem{T}[1//2*(Id + transp), 1//2*(Id - transp)]
end
projs = Vector{Vector{perm}}()
for l in 2:RG.group.n
u = RG.group([circshift([i for i in 1:l], -1); [i for i in l+1:RG.group.n]])
i = 0
while (l-1)*i <= RG.group.n
v = RG.group(circshift(collect(1:RG.group.n), i))
k = inv(v)*u*v
push!(projs, generateGroup([k], RG.group.n))
i += 1
end
end
idems = Vector{GroupRingElem{T}}()
for p in projs
append!(idems, [RG(p, T), RG(p, T, alt=true)])
end
return unique(idems)
end
function rankOne_projection{S}(chi::PropertyT.PermCharacter, idems::Vector{GroupRingElem{S}})
RG = parent(first(idems))
ids = [[one(RG, S)]; idems]
for (i,j,k) in Base.product(ids, ids, ids)
if chi(i) == zero(S) || chi(j) == zero(S) || chi(k) == zero(S)
continue
end
elt = i*j*k
elt^2 == elt || continue
if chi(elt) == one(S)
return elt
# return (i,j,k)
end
end
throw("Couldn't find rank-one projection for $chi")
end
function minimalprojections(G::PermutationGroup, T::Type=Rational{Int})
if G.n == 1
return [(one(GroupRing(G), T), one(GroupRing(G), T))]
elseif G.n < 8
RG = GroupRing(G, fastm=true)
else
RG = GroupRing(G, fastm=false)
end
RGidems = idempotents(RG, T)
chars = [PropertyT.PermCharacter(p) for p in Partitions(G.n)]
return [
(rankOne_projection(chi, RGidems), PropertyT.central_projection(RG, chi))
for chi in chars]
end
function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int})
mps = minimalprojections(G, T)
return [idem*cproj for (idem, cproj) in mps]
end
function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int})
N = BN.P.n
# projections as elements of the group rings RSₙ
SNprojs_nc = [rankOne_projections(PermutationGroup(i), T) for i in 1:N]
# embedding into group ring of BN
RBN = GroupRing(BN)
RFFFF_projs = [central_projection(GroupRing(BN.N), DirectProdCharacter(i),T)
for i in 1:BN.P.n]
e0 = central_projection(GroupRing(BN.N), DirectProdCharacter(0), T)
Q0 = RBN(e0, g -> BN(g))
Qs = [RBN(q, g -> BN(g)) for q in RFFFF_projs]
all_projs = [Q0*RBN(p, g->BN(g)) for p in SNprojs_nc[N]]
range = collect(1:N)
for i in 1:N-1
Sk_first = [RBN(p, g->BN(Nemo.emb!(BN.P(), g, range[1:i]))) for p in SNprojs_nc[i]]
Sk_last = [RBN(p, g->BN(Nemo.emb!(BN.P(), g, range[i+1:end]))) for p in SNprojs_nc[N-i]]
append!(all_projs,
[Qs[i]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)])
end
append!(all_projs, [Qs[N]*RBN(p, g->BN(g)) for p in SNprojs_nc[N]])
return all_projs
end
##############################################################################
#
# General Groups Misc
#
##############################################################################
doc"""
products(X::Vector{GroupElem}, Y::Vector{GroupElem}, op=*)
> Returns a vector of all possible products (or `op(x,y)`), where $x\in X$ and
> $y\in Y$ are group elements. You may specify which operation is used when
> forming 'products' by adding `op` (which is `*` by default).
"""
function products{T<:GroupElem}(X::AbstractVector{T}, Y::AbstractVector{T}, op=*)
result = Vector{T}()
seen = Set{T}()
for x in X
for y in Y
z = op(x,y)
if !in(z, seen)
push!(seen, z)
push!(result, z)
end
end
end
return result
end
doc"""
generateGroup(gens::Vector{GroupElem}, r=2, Id=parent(first(gens))(), op=*)
> Produces all elements of a group generated by elements in `gens` in ball of
> radius `r` (word-length metric induced by `gens`).
> If `r(=2)` is specified the procedure will terminate after generating ball
> of radius `r` in the word-length metric induced by `gens`.
> The identity element `Id` and binary operation function `op` can be supplied
> to e.g. take advantage of additive group structure.
"""
function generateGroup{T<:GroupElem}(gens::Vector{T}, r=2, Id::T=parent(first(gens))(), op=*)
n = 0
R = 1
elts = gens
gens = [Id; gens]
while n length(elts) && R < r
# @show elts
R += 1
n = length(elts)
elts = products(elts, gens, op)
end
return elts
end