mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-14 14:15:28 +01:00
115 lines
4.0 KiB
Julia
115 lines
4.0 KiB
Julia
module GroupAlgebras
|
|
|
|
import Base: convert, show, isequal, ==
|
|
import Base: +, -, *, //
|
|
import Base: size, length, norm
|
|
|
|
export GroupAlgebraElement
|
|
|
|
|
|
immutable GroupAlgebraElement{T<:Number}
|
|
coordinates::Vector{T}
|
|
product_matrix::Array{Int,2}
|
|
# basis::Array{Any,1}
|
|
|
|
function GroupAlgebraElement(coordinates::Vector{T},
|
|
product_matrix::Array{Int,2})
|
|
|
|
length(coordinates) == size(product_matrix,1) ||
|
|
throw(ArgumentError("Matrix has to represent products of basis
|
|
elements"))
|
|
size(product_matrix, 1) == size(product_matrix, 2) ||
|
|
throw(ArgumentError("Product matrix has to be square"))
|
|
# length(coordinates) == length(basis) || throw(ArgumentError("Coordinates must be given in the given basis"))
|
|
# new(coordinates, product_matrix, basis)
|
|
new(coordinates, product_matrix)
|
|
end
|
|
end
|
|
|
|
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
|
|
GroupAlgebraElement{T}(c::Vector{T},pm) = GroupAlgebraElement{T}(c,pm)
|
|
|
|
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
|
|
GroupAlgebraElement(convert(Vector{T}, X.coordinates), X.product_matrix)
|
|
|
|
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
|
|
"Element of Group Algebra over ", T, "\n", X.coordinates)
|
|
|
|
|
|
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
|
|
if T != S
|
|
warn("Comparing elements with different coefficients Rings!")
|
|
end
|
|
X.product_matrix == Y.product_matrix || return false
|
|
X.coordinates == Y.coordinates || return false
|
|
return true
|
|
end
|
|
|
|
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
|
|
|
|
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
|
|
X.product_matrix == Y.product_matrix || throw(DomainError(
|
|
"Elements don't seem to belong to the same Group Algebra!"))
|
|
return GroupAlgebraElement(X.coordinates+Y.coordinates, X.product_matrix)
|
|
end
|
|
|
|
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
|
Y::GroupAlgebraElement{S})
|
|
warn("Adding elements with different base rings!")
|
|
return GroupAlgebraElement(+(promote(X.coordinates, Y.coordinates)...),
|
|
X.product_matrix)
|
|
end
|
|
|
|
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
|
|
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coordinates, X.product_matrix)
|
|
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
|
|
|
|
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
|
|
Y::GroupAlgebraElement{T})
|
|
X.product_matrix == Y.product_matrix || DomainError(
|
|
"Elements don't seem to belong to the same Group Algebra!")
|
|
|
|
result = zeros(X.coordinates)
|
|
for (i,x) in enumerate(X.coordinates), (j,y) in enumerate(Y.coordinates)
|
|
index = X.product_matrix[i,j]
|
|
if index != 0
|
|
result[index]+= x*y
|
|
end
|
|
end
|
|
return GroupAlgebraElement(result, X.product_matrix)
|
|
end
|
|
|
|
function group_star_multiplication{T<:Number, S<:Number}(
|
|
X::GroupAlgebraElement{T},
|
|
Y::GroupAlgebraElement{S})
|
|
S == T || warn("Multiplying elements with different base rings!")
|
|
return group_star_multiplication(promote(X,Y)...)
|
|
end
|
|
|
|
(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
|
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
|
|
|
|
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
|
|
a*X.coordinates, X.product_matrix)
|
|
|
|
function scalar_multiplication{T<:Number, S<:Number}(a::T,
|
|
X::GroupAlgebraElement{S})
|
|
if T!=S
|
|
warn("Scalars and coefficients ring are not the same! Trying to promote...")
|
|
end
|
|
return GroupAlgebraElement(a*X.coordinates, X.product_matrix)
|
|
end
|
|
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
|
|
|
|
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
|
|
GroupAlgebraElement(X.coordinates//a, X.product_matrix)
|
|
|
|
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
|
|
X//convert(T,a)
|
|
|
|
length(X::GroupAlgebraElement) = length(X.coordinates)
|
|
size(X::GroupAlgebraElement) = size(X.coordinates)
|
|
norm(X::GroupAlgebraElement, p=2) = norm(X.coordinates, p)
|
|
|
|
end
|