PropertyT.jl/src/1712.07167.jl

284 lines
8.5 KiB
Julia

using Printf
###############################################################################
#
# Settings and filenames
#
###############################################################################
abstract type Settings end
struct Naive{El} <: Settings
name::String
G::Group
S::Vector{El}
radius::Int
upper_bound::Float64
solver::JuMP.OptimizerFactory
warmstart::Bool
end
struct Symmetrized{El} <: Settings
name::String
G::Group
S::Vector{El}
autS::Group
radius::Int
upper_bound::Float64
solver::JuMP.OptimizerFactory
warmstart::Bool
end
function Settings(name::String,
G::Group, S::Vector{<:GroupElem}, solver::JuMP.OptimizerFactory;
radius::Integer=2, upper_bound::Float64=1.0, warmstart=true)
return Naive(name, G, S, radius, upper_bound, solver, warmstart)
end
function Settings(name::String,
G::Group, S::Vector{<:GroupElem}, autS::Group, solver::JuMP.OptimizerFactory;
radius::Integer=2, upper_bound::Float64=1.0, warmstart=true)
return Symmetrized(name, G, S, autS, radius, upper_bound, solver, warmstart)
end
prefix(s::Naive) = s.name
prefix(s::Symmetrized) = "o"*s.name
suffix(s::Settings) = "$(s.upper_bound)"
prepath(s::Settings) = prefix(s)
fullpath(s::Settings) = joinpath(prefix(s), suffix(s))
filename(sett::Settings, s::Symbol) = filename(sett, Val{s})
filename(sett::Settings, ::Type{Val{:fulllog}}) =
joinpath(fullpath(sett), "full_$(string(now())).log")
filename(sett::Settings, ::Type{Val{:solverlog}}) =
joinpath(fullpath(sett), "solver_$(string(now())).log")
filename(sett::Settings, ::Type{Val{}}) =
joinpath(prepath(sett), "delta.jld")
filename(sett::Settings, ::Type{Val{:OrbitData}}) =
joinpath(prepath(sett), "OrbitData.jld")
filename(sett::Settings, ::Type{Val{:warmstart}}) =
joinpath(fullpath(sett), "warmstart.jld")
filename(sett::Settings, ::Type{Val{:solution}}) =
joinpath(fullpath(sett), "solution.jld")
###############################################################################
#
# λandP
#
###############################################################################
function warmstart(sett::Settings)
if sett.warmstart && isfile(filename(sett, :warmstart))
ws = load(filename(sett, :warmstart), "warmstart")
else
ws = nothing
end
return ws
end
function computeλandP(sett::Naive, Δ::GroupRingElem;
solverlog=tempname()*".log")
@info("Creating SDP problem...")
SDP_problem = SOS_problem(Δ^2, Δ, upper_bound=sett.upper_bound)
@info(Base.repr(SDP_problem))
ws = warmstart(sett)
@time status, ws = PropertyT.solve(solverlog, SDP_problem, sett.solver, ws)
@info("Solver's status: $status")
P = value.(SDP_problem[:P])
λ = value(SDP_problem[])
save(filename(sett, :warmstart),
"warmstart", (ws.primal, ws.dual, ws.slack), "P", P, "λ", λ)
return λ, P
end
function computeλandP(sett::Symmetrized, Δ::GroupRingElem;
solverlog=tempname()*".log")
if !isfile(filename(sett, :OrbitData))
isdefined(parent(Δ), :basis) || throw("You need to define basis of Group Ring to compute orbit decomposition!")
orbit_data = OrbitData(parent(Δ), sett.autS)
save(filename(sett, :OrbitData), "OrbitData", orbit_data)
end
orbit_data = load(filename(sett, :OrbitData), "OrbitData")
orbit_data = decimate(orbit_data)
@info("Creating SDP problem...")
SDP_problem, varP = SOS_problem(Δ^2, Δ, orbit_data, upper_bound=sett.upper_bound)
@info(Base.repr(SDP_problem))
ws = warmstart(sett)
@time status, ws = PropertyT.solve(solverlog, SDP_problem, sett.solver, ws)
@info("Solver's status: $status")
λ = value(SDP_problem[])
Ps = [value.(P) for P in varP]
save(filename(sett, :warmstart),
"warmstart", (ws.primal, ws.dual, ws.slack), "Ps", Ps, "λ", λ)
@info("Reconstructing P...")
@time P = reconstruct(Ps, orbit_data)
return λ, P
end
###############################################################################
#
# Checking solution
#
###############################################################################
function distance_to_positive_cone(Δ::GroupRingElem, λ, Q; R::Int=2)
separator = "-"^76
info_strs = [separator,
"Checking in floating-point arithmetic...",
"λ = "]
@info(join(info_strs, "\n"))
eoi = Δ^2-λ*Δ
@info("Computing sum of squares decomposition...")
@time residual = eoi - compute_SOS(parent(eoi), augIdproj(Q))
L1_norm = norm(residual,1)
distance = λ - 2.0^(2ceil(log2(R)))*L1_norm
info_strs = ["Numerical metrics:",
"ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", aug(residual)))",
"‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", L1_norm))",
"Floating point distance (to positive cone) ≈",
"$(@sprintf("%.10f", distance))"]
@info(join(info_strs, "\n"))
if distance 0
return distance
end
λ = @interval(λ)
info_strs = [separator,
"Checking in interval arithmetic...",
"λ ∈ "]
@info(join(info_strs, "\n"))
eoi = Δ^2 - λ*Δ
@info("Projecting columns of Q to the augmentation ideal...")
@time Q, check = augIdproj(Interval, Q)
info_strs = ["Checking that sum of every column contains 0.0...",
(check ? "DONE!" : "FAILED!")]
@info(join(info_strs, "\n"))
check || @warn("The following numbers are meaningless!")
@info("Computing sum of squares decomposition...")
@time residual = eoi - compute_SOS(parent(eoi), Q)
L1_norm = norm(residual,1)
distance = λ - 2.0^(2ceil(log2(R)))*L1_norm
info_strs = ["Numerical metrics:",
"ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(aug(residual))",
"‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(L1_norm)",
"Interval distance (to positive cone) ∈",
"$(distance)",
separator]
@info(join(info_strs, "\n"))
return distance.lo
end
###############################################################################
#
# Interpreting the numerical results
#
###############################################################################
Kazhdan(λ::Number, N::Integer) = sqrt(2*λ/N)
function check_property_T(sett::Settings)
print_summary(sett)
certified_sgap = spectral_gap(sett)
return interpret_results(sett, certified_sgap)
end
function print_summary(sett::Settings)
separator = "="^76
info_strs = [separator,
"Running tests for $(sett.name):",
"Upper bound for λ: $(sett.upper_bound), on radius $(sett.radius).",
"Warmstart: $(sett.warmstart)",
"Results will be stored in ./$(PropertyT.prepath(sett))",
"Solver: $(typeof(sett.solver()))",
"Solvers options: "]
append!(info_strs, [rpad(" $k", 30)* "\t$v" for (k,v) in sett.solver().options])
push!(info_strs, separator)
@info(join(info_strs, "\n"))
end
function interpret_results(sett::Settings, sgap::Number)
if sgap > 0
Kazhdan_κ = Kazhdan(sgap, length(sett.S))
if Kazhdan_κ > 0
@info("κ($(sett.name), S) ≥ $Kazhdan_κ: Group HAS property (T)!")
return true
end
end
info_strs = ["The certified lower bound on the spectral gap is negative:",
"λ($(sett.name), S) ≥ 0.0 > $sgap",
"This tells us nothing about property (T)"]
@info(join(info_strs, "\n"))
return false
end
function spectral_gap(sett::Settings)
fp = PropertyT.fullpath(sett)
isdir(fp) || mkpath(fp)
if isfile(filename(sett,))
# cached
@info("Loading precomputed Δ...")
Δ = loadGRElem(filename(sett,), sett.G)
else
# compute
Δ = Laplacian(sett.S, sett.radius)
saveGRElem(filename(sett, ), Δ)
end
if !sett.warmstart && isfile(filename(sett, :solution))
λ, P = load(filename(sett, :solution), "λ", "P")
else
λ, P = computeλandP(sett, Δ,
solverlog=filename(sett, :solverlog))
save(filename(sett, :solution), "λ", λ, "P", P)
if λ < 0
@warn("Solver did not produce a valid solution!")
end
end
info_strs = ["λ = ",
"sum(P) = $(sum(P))",
"maximum(P) = $(maximum(P))",
"minimum(P) = $(minimum(P))"]
@info(join(info_strs, "\n"))
isapprox(eigvals(P), abs.(eigvals(P))) ||
@warn("The solution matrix doesn't seem to be positive definite!")
@time Q = real(sqrt( (P.+ P')./2 ))
certified_sgap = distance_to_positive_cone(Δ, λ, Q, R=sett.radius)
return certified_sgap
end