PropertyT.jl/property(T).jl

146 lines
4.0 KiB
Julia

using JuMP
import Base: rationalize
using GroupAlgebras
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
result = Vector{T}()
for u in U
for v in V
push!(result, u*v)
end
end
return unique(result)
end
function create_product_matrix(basis, limit)
product_matrix = zeros(Int, (limit,limit))
for i in 1:limit
x_inv::eltype(basis) = inv(basis[i])
for j in 1:limit
w = x_inv*basis[j]
index = findfirst(basis, w)
index 0 || throw(ArgumentError("Product is not supported on basis: $w"))
product_matrix[i,j] = index
end
end
return product_matrix
end
function constraints_from_pm(pm, total_length=maximum(pm))
n = size(pm,1)
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
for j in 1:n
Threads.@threads for i in 1:n
idx = pm[i,j]
push!(constraints[idx], [i,j])
end
end
return constraints
end
function Laplacian_sparse(S::Array{Array{Float64,2},1},
basis::Array{Array{Float64,2},1})
squares = unique(vcat([basis[1]], S, products(S,S)))
result = spzeros(length(basis))
result[1] = length(S)
for s in S
ind = find(basis, s)
result[ind] += -1
end
return result
end
function Laplacian(S::Array{Array{Float64,2},1},
basis:: Array{Array{Float64,2},1})
return full(Laplacian_sparse(S,basis))
end
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement)
N = size(Δ.product_matrix,1)
const Δ² = Δ*Δ
@assert length(Δ) == length(matrix_constraints)
m = Model();
@variable(m, A[1:N, 1:N], SDP)
@SDconstraint(m, A >= zeros(size(A)))
@variable(m, κ >= 0.0)
@objective(m, Max, κ)
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
end
return m
end
function solve_for_property_T{T}(S₁::Vector{Array{T,2}}, solver; verbose=true)
Δ, matrix_constraints = prepare_Laplacian_and_constraints(S₁)
problem = create_SDP_problem(matrix_constraints, Δ);
@show solver
setsolver(problem, solver);
verbose && @show problem
solution_status = solve(problem);
verbose && @show solution_status
if solution_status != :Optimal
throw(ExceptionError("The solver did not solve the problem successfully!"))
else
κ = SL_3ZZ.objVal;
A = getvalue(getvariable(SL_3ZZ, :A));;
end
return κ, A
end
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
return Δ*Δ - κ*Δ
end
@everywhere function square(vector, elt)
zzz = zeros(elt.coefficients)
zzz[1:length(vector)] = vector
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
# return (new_base_elt*new_base_elt).coefficients
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
end
function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2},
elt::GroupAlgebraElement{T})
L = size(sqrt_matrix,2)
result = @parallel (+) for i in 1:L
square(sqrt_matrix[:,i], elt)
end
return GroupAlgebraElement{T}(result, elt.product_matrix)
end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
sqrt_corrected = similar(sqrt_matrix)
l = size(sqrt_matrix,2)
for i in 1:l
col = view(sqrt_matrix,:,i)
sqrt_corrected[:,i] = col - sum(col)//l
# @assert sum(sqrt_corrected[:,i]) == 0
end
return sqrt_corrected
end
function check_solution{T<:Number}(κ::T,
sqrt_matrix::Array{T,2},
Δ::GroupAlgebraElement{T})
eoi = EOI(Δ, κ)
result = compute_SOS(sqrt_matrix, Δ)
L₁_dist = norm(result - eoi,1)
return eoi - result, L₁_dist
end
function rationalize{T<:Integer, S<:Real}(::Type{T},
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
r(x) = rationalize(T, x, tol=tol)
return r.(X)
end;