1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 14:15:28 +01:00
PropertyT.jl/src/RGprojections.jl

256 lines
7.4 KiB
Julia

module Projections
using AbstractAlgebra
using Groups
using GroupRings
using Markdown
export PermCharacter, DirectProdCharacter, rankOne_projections
###############################################################################
#
# Characters of Symmetric Group and DirectProduct
#
###############################################################################
abstract type AbstractCharacter end
struct PermCharacter <: AbstractCharacter
p::Generic.Partition
end
struct DirectProdCharacter{N, T<:AbstractCharacter} <: AbstractCharacter
chars::NTuple{N, T}
end
function (chi::DirectProdCharacter)(g::DirectPowerGroupElem)
res = 1
for (χ, elt) in zip(chi.chars, g.elts)
res *= χ(elt)
end
return res
end
function (chi::PermCharacter)(g::Generic.perm)
R = AbstractAlgebra.partitionseq(chi.p)
p = Partition(Generic.permtype(g))
return Int(Generic.MN1inner(R, p, 1, Generic._charvalsTable))
end
AbstractAlgebra.dim(χ::PermCharacter) = dim(YoungTableau(χ.p))
for T in [PermCharacter, DirectProdCharacter]
@eval begin
function (chi::$T)(X::GroupRingElem)
RG = parent(X)
z = zero(eltype(X))
result = z
for i in 1:length(X.coeffs)
if X.coeffs[i] != z
result += chi(RG.basis[i])*X.coeffs[i]
end
end
return result
end
end
end
characters(G::Generic.PermGroup) = (PermCharacter(p) for p in AllParts(G.n))
function characters(G::DirectPowerGroup{N}) where N
nfold_chars = Iterators.repeated(characters(G.group), N)
return (DirectProdCharacter(idx) for idx in Iterators.product(nfold_chars...))
end
###############################################################################
#
# Projections
#
###############################################################################
function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Rational{Int})
result = RG(zeros(T, length(RG.basis)))
dim = chi(RG.group())
ord = Int(order(RG.group))
for g in RG.basis
result[g] = convert(T, (dim//ord)*chi(g))
end
return result
end
function alternating_emb(RG::GroupRing{Gr,T}, V::Vector{T}, S::Type=Rational{Int}) where {Gr<:Generic.PermGroup, T<:GroupElem}
res = RG(S)
for g in V
res[g] += sign(g)
end
return res
end
function idempotents(RG::GroupRing{Generic.PermGroup{S}}, T::Type=Rational{Int}) where S<:Integer
if RG.group.n == 1
return GroupRingElem{T}[one(RG,T)]
elseif RG.group.n == 2
Id = one(RG,T)
transp = RG(perm"(1,2)", T)
return GroupRingElem{T}[1//2*(Id + transp), 1//2*(Id - transp)]
end
projs = Vector{Vector{Generic.perm{S}}}()
for l in 2:RG.group.n
u = RG.group([circshift([i for i in 1:l], -1); [i for i in l+1:RG.group.n]])
i = 0
while (l-1)*i <= RG.group.n
v = RG.group(circshift(collect(1:RG.group.n), i))
k = inv(v)*u*v
push!(projs, generateGroup([k], RG.group.n))
i += 1
end
end
idems = Vector{GroupRingElem{T}}()
for p in projs
append!(idems, [RG(p, T)//length(p), alternating_emb(RG, p, T)//length(p)])
end
return unique(idems)
end
function rankOne_projection(chi::PermCharacter, idems::Vector{T}) where {T<:GroupRingElem}
RG = parent(first(idems))
S = eltype(first(idems))
ids = [one(RG, S); idems]
zzz = zero(S)
for (i,j,k) in Base.product(ids, ids, ids)
if chi(i) == zzz || chi(j) == zzz || chi(k) == zzz
continue
else
elt = i*j*k
if elt^2 != elt
continue
elseif chi(elt) == one(S)
return elt
# return (i,j,k)
end
end
end
throw("Couldn't find rank-one projection for $chi")
end
function rankOne_projections(RG::GroupRing{G}, T::Type=Rational{Int}) where G<:Generic.PermGroup
if RG.group.n == 1
return [GroupRingElem([one(T)], RG)]
end
RGidems = idempotents(RG, T)
min_projs = [central_projection(RG,chi)*rankOne_projection(chi,RGidems) for chi in characters(RG.group)]
return min_projs
end
function ifelsetuple(a,b, k, n)
x = [repeat([a], k); repeat([b], n-k)]
return tuple(x...)
end
function orbit_selector(n::Integer, k::Integer,
chi::AbstractCharacter, psi::AbstractCharacter)
return Projections.DirectProdCharacter(ifelsetuple(chi, psi, k, n))
end
function rankOne_projections(RBn::GroupRing{G}, T::Type=Rational{Int}) where {G<:WreathProduct}
Bn = RBn.group
N = Bn.P.n
# projections as elements of the group rings RSₙ
Sn_rankOnePr = [rankOne_projections(
GroupRing(PermGroup(i), collect(PermGroup(i))))
for i in typeof(N)(1):N]
# embedding into group ring of BN
RN = GroupRing(Bn.N, collect(Bn.N))
sign, id = collect(characters(Bn.N.group))
# Bn.N = (Z/2Z)ⁿ characters corresponding to the first k coordinates:
BnN_orbits = Dict(i => orbit_selector(N, i, sign, id) for i in 0:N)
Q = Dict(i => RBn(g -> Bn(g), central_projection(RN, BnN_orbits[i], T)) for i in 0:N)
Q = Dict(key => GroupRings.dense(val) for (key, val) in Q)
all_projs = [Q[0]*RBn(g->Bn(g), p) for p in Sn_rankOnePr[N]]
r = collect(1:N)
for i in 1:N-1
first_emb = g->Bn(Generic.emb!(Bn.P(), g, view(r, 1:i)))
last_emb = g->Bn(Generic.emb!(Bn.P(), g, view(r, (i+1):N)))
Sk_first = (RBn(first_emb, p) for p in Sn_rankOnePr[i])
Sk_last = (RBn(last_emb, p) for p in Sn_rankOnePr[N-i])
append!(all_projs,
[Q[i]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)])
end
append!(all_projs, [Q[N]*RBn(g->Bn(g), p) for p in Sn_rankOnePr[N]])
return all_projs
end
##############################################################################
#
# General Groups Misc
#
##############################################################################
@doc doc"""
products(X::Vector{GroupElem}, Y::Vector{GroupElem}, op=*)
> Returns a vector of all possible products (or `op(x,y)`), where $x\in X$ and
> $y\in Y$ are group elements. You may specify which operation is used when
> forming 'products' by adding `op` (which is `*` by default).
"""
function products(X::AbstractVector{T}, Y::AbstractVector{T}, op=*) where {T<:GroupElem}
result = Vector{T}()
seen = Set{T}()
for x in X
for y in Y
z = op(x,y)
if !in(z, seen)
push!(seen, z)
push!(result, z)
end
end
end
return result
end
@doc doc"""
generateGroup(gens::Vector{GroupElem}, r=2, Id=parent(first(gens))(), op=*)
> Produces all elements of a group generated by elements in `gens` in ball of
> radius `r` (word-length metric induced by `gens`).
> If `r(=2)` is specified the procedure will terminate after generating ball
> of radius `r` in the word-length metric induced by `gens`.
> The identity element `Id` and binary operation function `op` can be supplied
> to e.g. take advantage of additive group structure.
"""
function generateGroup(gens::Vector{T}, r=2, Id::T=parent(first(gens))(), op=*) where {T<:GroupElem}
n = 0
R = 1
elts = gens
gens = [Id; gens]
while n length(elts) && R < r
# @show elts
R += 1
n = length(elts)
elts = products(elts, gens, op)
end
return elts
end
end # of module Projections