1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 07:20:28 +01:00
PropertyT.jl/GroupAlgebras.jl

117 lines
4.0 KiB
Julia

module GroupAlgebras
import Base: convert, show, isequal, ==
import Base: +, -, *, //
import Base: size, length, norm
export GroupAlgebraElement
immutable GroupAlgebraElement{T<:Number}
coordinates::Vector{T}
product_matrix::Array{Int,2}
# basis::Array{Any,1}
function GroupAlgebraElement(coordinates::Vector{T},
product_matrix::Array{Int,2})
size(product_matrix, 1) == size(product_matrix, 2) ||
throw(ArgumentError("Product matrix has to be square"))
new(coordinates, product_matrix)
end
end
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
GroupAlgebraElement{T}(c::Vector{T},pm) = GroupAlgebraElement{T}(c,pm)
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
GroupAlgebraElement(convert(Vector{T}, X.coordinates), X.product_matrix)
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
"Element of Group Algebra over ", T, "of length $(length(X)):\n", X.coordinates)
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
if T != S
warn("Comparing elements with different coefficients Rings!")
end
X.product_matrix == Y.product_matrix || return false
X.coordinates == Y.coordinates || return false
return true
end
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
X.product_matrix == Y.product_matrix || throw(ArgumentError(
"Elements don't seem to belong to the same Group Algebra!"))
return GroupAlgebraElement(X.coordinates+Y.coordinates, X.product_matrix)
end
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{S})
warn("Adding elements with different base rings!")
return GroupAlgebraElement(+(promote(X.coordinates, Y.coordinates)...),
X.product_matrix)
end
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coordinates, X.product_matrix)
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{T})
X.product_matrix == Y.product_matrix || ArgumentError(
"Elements don't seem to belong to the same Group Algebra!")
result = zeros(X.coordinates)
for (i,x) in enumerate(X.coordinates)
if x != 0
for (j,y) in enumerate(Y.coordinates)
if y != 0
index = X.product_matrix[i,j]
if index == 0
throw(ArgumentError("The product don't seem to belong to the span of basis!"))
else
result[index]+= x*y
end
end
end
end
end
return GroupAlgebraElement(result, X.product_matrix)
end
function group_star_multiplication{T<:Number, S<:Number}(
X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{S})
S == T || warn("Multiplying elements with different base rings!")
return group_star_multiplication(promote(X,Y)...)
end
(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T},
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
a*X.coordinates, X.product_matrix)
function scalar_multiplication{T<:Number, S<:Number}(a::T,
X::GroupAlgebraElement{S})
if T!=S
warn("Scalars and coefficients ring are not the same! Trying to promote...")
end
return GroupAlgebraElement(a*X.coordinates, X.product_matrix)
end
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
GroupAlgebraElement(X.coordinates//a, X.product_matrix)
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
X//convert(T,a)
length(X::GroupAlgebraElement) = length(X.coordinates)
size(X::GroupAlgebraElement) = size(X.coordinates)
norm(X::GroupAlgebraElement, p=2) = norm(X.coordinates, p)
end