1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-13 22:05:27 +01:00
PropertyT.jl/scripts/SpN_Adj.jl

80 lines
1.8 KiB
Julia

using LinearAlgebra
BLAS.set_num_threads(4)
ENV["OMP_NUM_THREADS"] = 4
include(joinpath(@__DIR__, "../test/optimizers.jl"))
using SCS_MKL_jll
using Groups
import Groups.MatrixGroups
using PropertyT
import PropertyT.SW as SW
using PropertyT.PG
using PropertyT.SA
include(joinpath(@__DIR__, "argparse.jl"))
include(joinpath(@__DIR__, "utils.jl"))
const N = parsed_args["N"]
const HALFRADIUS = parsed_args["halfradius"]
const UPPER_BOUND = parsed_args["upper_bound"]
G = MatrixGroups.SymplecticGroup{2N}(Int8)
@info "Running Adj_C₂ - λ·Δ sum of squares decomposition for " G
@info "computing group algebra structure"
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
@info "computing WedderburnDecomposition"
wd = let RG = RG, N = N
G = StarAlgebras.object(RG)
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
act = PropertyT.action_by_conjugation(G, Σ)
wdfl = @time SW.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
)
wdfl
end
@info wd
Δ = RG(length(S)) - sum(RG(s) for s in S)
Δs = PropertyT.laplacians(
RG,
S,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
# elt = Δ^2
elt = PropertyT.Adj(Δs, :C₂)
unit = Δ
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd;
upper_bound = UPPER_BOUND,
augmented = true,
show_progress = true,
)
solve_in_loop(
model,
wd,
varP;
logdir = "./log/Sp($N,Z)/r=$HALFRADIUS/Adj_C₂-$(UPPER_BOUND)Δ",
optimizer = cosmo_optimizer(;
eps = 1e-10,
max_iters = 50_000,
accel = 50,
alpha = 1.95,
),
data = (elt = elt, unit = unit, halfradius = HALFRADIUS),
)