mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-13 22:05:27 +01:00
224 lines
5.5 KiB
Julia
224 lines
5.5 KiB
Julia
@testset "1703.09680 Examples" begin
|
|
|
|
@testset "SL(2,Z)" begin
|
|
N = 2
|
|
G = MatrixGroups.SpecialLinearGroup{N}(Int8)
|
|
RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true)
|
|
|
|
Δ = let RG = RG, S = S
|
|
RG(length(S)) - sum(RG(s) for s in S)
|
|
end
|
|
|
|
elt = Δ^2
|
|
unit = Δ
|
|
ub = 0.1
|
|
|
|
status, certified, λ = check_positivity(
|
|
elt,
|
|
unit,
|
|
upper_bound=ub,
|
|
halfradius=2,
|
|
optimizer=scs_optimizer(
|
|
eps=1e-10,
|
|
max_iters=5_000,
|
|
accel=50,
|
|
alpha=1.9,
|
|
)
|
|
)
|
|
|
|
@test status == JuMP.ALMOST_OPTIMAL
|
|
@test !certified
|
|
@test λ < 0
|
|
end
|
|
|
|
@testset "SL(3,F₅)" begin
|
|
N = 3
|
|
G = MatrixGroups.SpecialLinearGroup{N}(SymbolicWedderburn.Characters.FiniteFields.GF{5})
|
|
RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true)
|
|
|
|
Δ = let RG = RG, S = S
|
|
RG(length(S)) - sum(RG(s) for s in S)
|
|
end
|
|
|
|
elt = Δ^2
|
|
unit = Δ
|
|
ub = 1.01 # 1.5
|
|
|
|
status, certified, λ = check_positivity(
|
|
elt,
|
|
unit,
|
|
upper_bound=ub,
|
|
halfradius=2,
|
|
optimizer=scs_optimizer(
|
|
eps=1e-10,
|
|
max_iters=5_000,
|
|
accel=50,
|
|
alpha=1.9,
|
|
)
|
|
)
|
|
|
|
@test status == JuMP.OPTIMAL
|
|
@test certified
|
|
@test λ > 1
|
|
|
|
m = PropertyT.sos_problem_dual(elt, unit)
|
|
PropertyT.solve(m, cosmo_optimizer(
|
|
eps=1e-6,
|
|
max_iters=5_000,
|
|
accel=50,
|
|
alpha=1.9,
|
|
))
|
|
|
|
@test JuMP.termination_status(m) in (JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL)
|
|
@test JuMP.objective_value(m) ≈ 1.5 atol = 1e-2
|
|
end
|
|
|
|
@testset "SAut(F₂)" begin
|
|
N = 2
|
|
G = SpecialAutomorphismGroup(FreeGroup(N))
|
|
RG, S, sizes = PropertyT.group_algebra(G, halfradius=2, twisted=true)
|
|
|
|
Δ = let RG = RG, S = S
|
|
RG(length(S)) - sum(RG(s) for s in S)
|
|
end
|
|
|
|
elt = Δ^2
|
|
unit = Δ
|
|
ub = 0.1
|
|
|
|
status, certified, λ = check_positivity(
|
|
elt,
|
|
unit,
|
|
upper_bound=ub,
|
|
halfradius=2,
|
|
optimizer=scs_optimizer(
|
|
eps=1e-10,
|
|
max_iters=5_000,
|
|
accel=50,
|
|
alpha=1.9,
|
|
)
|
|
)
|
|
|
|
@test status == JuMP.ALMOST_OPTIMAL
|
|
@test λ < 0
|
|
@test !certified
|
|
|
|
@time sos_problem =
|
|
PropertyT.sos_problem_primal(elt, upper_bound=ub)
|
|
|
|
status, _ = PropertyT.solve(
|
|
sos_problem,
|
|
cosmo_optimizer(
|
|
eps=1e-7,
|
|
max_iters=10_000,
|
|
accel=0,
|
|
alpha=1.9,
|
|
)
|
|
)
|
|
@test status == JuMP.OPTIMAL
|
|
P = JuMP.value.(sos_problem[:P])
|
|
Q = real.(sqrt(P))
|
|
certified, λ_cert = PropertyT.certify_solution(
|
|
elt,
|
|
zero(elt),
|
|
0.0,
|
|
Q,
|
|
halfradius=2,
|
|
)
|
|
@test !certified
|
|
@test λ_cert < 0
|
|
|
|
end
|
|
|
|
@testset "SL(3,Z) has (T)" begin
|
|
n = 3
|
|
|
|
SL = MatrixGroups.SpecialLinearGroup{n}(Int8)
|
|
RSL, S, sizes = PropertyT.group_algebra(SL, halfradius=2, twisted=true)
|
|
|
|
Δ = RSL(length(S)) - sum(RSL(s) for s in S)
|
|
|
|
@testset "basic formulation" begin
|
|
elt = Δ^2
|
|
unit = Δ
|
|
ub = 0.1
|
|
|
|
opt_problem = PropertyT.sos_problem_primal(
|
|
elt,
|
|
unit,
|
|
upper_bound=ub,
|
|
augmented=false,
|
|
)
|
|
|
|
status, _ = PropertyT.solve(
|
|
opt_problem,
|
|
cosmo_optimizer(
|
|
eps=1e-10,
|
|
max_iters=10_000,
|
|
accel=0,
|
|
alpha=1.5,
|
|
),
|
|
)
|
|
|
|
@test status == JuMP.OPTIMAL
|
|
|
|
λ = JuMP.value(opt_problem[:λ])
|
|
@test λ > 0.09
|
|
Q = real.(sqrt(JuMP.value.(opt_problem[:P])))
|
|
|
|
certified, λ_cert = PropertyT.certify_solution(
|
|
elt,
|
|
unit,
|
|
λ,
|
|
Q,
|
|
halfradius=2,
|
|
augmented=false,
|
|
)
|
|
|
|
@test certified
|
|
@test isapprox(λ_cert, λ, rtol=1e-5)
|
|
end
|
|
|
|
@testset "augmented formulation" begin
|
|
elt = Δ^2
|
|
unit = Δ
|
|
ub = 0.20001 # Inf
|
|
|
|
opt_problem = PropertyT.sos_problem_primal(
|
|
elt,
|
|
unit,
|
|
upper_bound=ub,
|
|
augmented=true,
|
|
)
|
|
|
|
status, _ = PropertyT.solve(
|
|
opt_problem,
|
|
scs_optimizer(
|
|
eps=1e-10,
|
|
max_iters=10_000,
|
|
accel=-10,
|
|
alpha=1.5,
|
|
),
|
|
)
|
|
|
|
@test status == JuMP.OPTIMAL
|
|
|
|
λ = JuMP.value(opt_problem[:λ])
|
|
Q = real.(sqrt(JuMP.value.(opt_problem[:P])))
|
|
|
|
certified, λ_cert = PropertyT.certify_solution(
|
|
elt,
|
|
unit,
|
|
λ,
|
|
Q,
|
|
halfradius=2,
|
|
augmented=true,
|
|
)
|
|
|
|
@test certified
|
|
@test isapprox(λ_cert, λ, rtol=1e-5)
|
|
@test λ_cert > 2 // 10
|
|
end
|
|
end
|
|
end
|