mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-13 14:00:27 +01:00
134 lines
4.5 KiB
Julia
134 lines
4.5 KiB
Julia
module GroupAlgebras
|
|
|
|
import Base: convert, show, isequal, ==
|
|
import Base: +, -, *, //
|
|
import Base: size, length, norm, rationalize
|
|
|
|
export GroupAlgebraElement
|
|
|
|
|
|
immutable GroupAlgebraElement{T<:Number}
|
|
coefficients::AbstractVector{T}
|
|
product_matrix::Array{Int,2}
|
|
# basis::Array{Any,1}
|
|
|
|
function GroupAlgebraElement(coefficients::AbstractVector,
|
|
product_matrix::Array{Int,2})
|
|
|
|
size(product_matrix, 1) == size(product_matrix, 2) ||
|
|
throw(ArgumentError("Product matrix has to be square"))
|
|
new(coefficients, product_matrix)
|
|
end
|
|
end
|
|
|
|
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
|
|
GroupAlgebraElement{T}(c::AbstractVector{T},pm) = GroupAlgebraElement{T}(c,pm)
|
|
|
|
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
|
|
GroupAlgebraElement(convert(AbstractVector{T}, X.coefficients), X.product_matrix)
|
|
|
|
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
|
|
"Element of Group Algebra over $T of length $(length(X)):\n $(X.coefficients)")
|
|
|
|
|
|
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
|
|
if T != S
|
|
warn("Comparing elements with different coefficients Rings!")
|
|
end
|
|
X.product_matrix == Y.product_matrix || return false
|
|
X.coefficients == Y.coefficients || return false
|
|
return true
|
|
end
|
|
|
|
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
|
|
|
|
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
|
|
X.product_matrix == Y.product_matrix || throw(ArgumentError(
|
|
"Elements don't seem to belong to the same Group Algebra!"))
|
|
return GroupAlgebraElement(X.coefficients+Y.coefficients, X.product_matrix)
|
|
end
|
|
|
|
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
|
Y::GroupAlgebraElement{S})
|
|
warn("Adding elements with different base rings!")
|
|
return GroupAlgebraElement(+(promote(X.coefficients, Y.coefficients)...),
|
|
X.product_matrix)
|
|
end
|
|
|
|
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
|
|
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coefficients, X.product_matrix)
|
|
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
|
|
|
|
function algebra_multiplication{T<:Number}(X::AbstractVector{T}, Y::AbstractVector{T}, pm::Array{Int,2})
|
|
result = zeros(X)
|
|
for (j,y) in enumerate(Y)
|
|
if y != zero(T)
|
|
for (i, index) in enumerate(pm[:,j])
|
|
if X[i] != zero(T)
|
|
index == 0 && throw(ArgumentError("The product don't seem to belong to the span of basis!"))
|
|
result[index] += X[i]*y
|
|
end
|
|
end
|
|
end
|
|
end
|
|
return result
|
|
end
|
|
|
|
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
|
|
Y::GroupAlgebraElement{T})
|
|
X.product_matrix == Y.product_matrix || ArgumentError(
|
|
"Elements don't seem to belong to the same Group Algebra!")
|
|
result = algebra_multiplication(X.coefficients, Y.coefficients, X.product_matrix)
|
|
return GroupAlgebraElement(result, X.product_matrix)
|
|
end
|
|
|
|
function group_star_multiplication{T<:Number, S<:Number}(
|
|
X::GroupAlgebraElement{T},
|
|
Y::GroupAlgebraElement{S})
|
|
S == T || warn("Multiplying elements with different base rings!")
|
|
return group_star_multiplication(promote(X,Y)...)
|
|
end
|
|
|
|
(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
|
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
|
|
|
|
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
|
|
a*X.coefficients, X.product_matrix)
|
|
|
|
function scalar_multiplication{T<:Number, S<:Number}(a::T,
|
|
X::GroupAlgebraElement{S})
|
|
promote_type(T,S) == S || warn("Scalar and coefficients are in different rings! Promoting result to $(promote_type(T,S))")
|
|
return GroupAlgebraElement(a*X.coefficients, X.product_matrix)
|
|
end
|
|
|
|
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
|
|
|
|
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
|
|
GroupAlgebraElement(X.coefficients//a, X.product_matrix)
|
|
|
|
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
|
|
X//convert(T,a)
|
|
|
|
length(X::GroupAlgebraElement) = length(X.coefficients)
|
|
size(X::GroupAlgebraElement) = size(X.coefficients)
|
|
|
|
function norm(X::GroupAlgebraElement, p=2)
|
|
if p == 1
|
|
return sum(abs(X.coefficients))
|
|
elseif p == Inf
|
|
return max(abs(X.coefficients))
|
|
else
|
|
return norm(X.coefficients, p)
|
|
end
|
|
end
|
|
|
|
ɛ(X::GroupAlgebraElement) = sum(X.coefficients)
|
|
|
|
function rationalize{T<:Integer, S<:Number}(
|
|
::Type{T}, X::GroupAlgebraElement{S}; tol=eps(S))
|
|
v = rationalize(T, X.coefficients, tol=tol)
|
|
return GroupAlgebraElement(v, X.product_matrix)
|
|
end
|
|
|
|
end
|