1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 22:20:28 +01:00
PropertyT.jl/Groups.jl
2017-01-18 17:52:57 +01:00

328 lines
8.5 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module FreeGroups
export GSymbol, AutSymbol, Word, GWord, FGWord, AutWord, FGAutomorphism
import Base: length, ==, hash, show, convert
import Base: *, ^, convert
import Base: one, inv, reduce, push!, unshift!
abstract GSymbol
immutable FGSymbol <: GSymbol
gen::String
pow::Int
end
immutable AutSymbol <: GSymbol
gen::String
pow::Int
ex::Expr
end
IDSymbol(::Type{FGSymbol}) = FGSymbol("(id)", 0)
IDSymbol(::Type{AutSymbol}) = AutSymbol("(id)", 0, :(IDAutomorphism(N)))
FGSymbol(x::String) = FGSymbol(x,1)
function show(io::IO, s::GSymbol)
if s.pow == 1
print(io, (s.gen))
elseif s.pow == 0
print(io, "(id)")
else
print(io, (s.gen)*"^$(s.pow)")
end
end
(==)(s::GSymbol, t::GSymbol) = s.gen == t.gen && s.pow == t.pow
length(s::GSymbol) = (s.pow == 0 ? 0 : 1)
one{T<:GSymbol}(::Type{T}) = IDSymbol(T)
one(s::GSymbol) = one(typeof(s))
inv(s::FGSymbol) = FGSymbol(s.gen, -s.pow)
convert(::Type{FGSymbol}, x::String) = FGSymbol(x)
reduce(s::GSymbol) = (s.pow == 0 ? one(s) : s)
change_pow(s::FGSymbol, n::Int) = reduce(FGSymbol(s.gen, n))
change_pow(s::AutSymbol, n::Int) = reduce(AutSymbol(s.gen, n, s.ex))
(^)(s::GSymbol, n::Integer) = change_pow(s, s.pow*n)
function inv(f::AutSymbol)
symbol = f.ex.args[1]
if symbol ==
return FreeGroups.change_pow(f, f.pow % 2)
elseif symbol == :σ
perm = invperm(f.ex.args[2])
gen = string('σ', [Char(8320 + i) for i in perm]...)
return AutSymbol(gen, f.pow, :(σ($perm)))
elseif symbol == :(ϱ) || symbol ==
return AutSymbol(f.gen, -f.pow, f.ex)
elseif symbol == :IDAutomorphism
return f
else
throw(ArgumentError("Don't know how to invert $f (of type $symbol)"))
end
end
function (*){T<:GSymbol}(s::T, t::T)
return GWord{T}([s])*t
end
abstract Word
#=
@ScottPJones
If so, I'd recommend
1) making GWord a type, not an immutable
2) add fields
savedhash::UInt and
modified::Bool
3) make any function that modifies the contents of .symbols set the modified flag,
4) make the hash function
a) check that flag:
if false, return the savedhash field,
otherwise, call reduce!,
b) clear the modified flag, and
c) calculate a hash value simply by calling hash(symbols)
d) save that back into the savedhash field
5) for ==, I don't think you need to do all that checking for length or length == 0, that will already be handled by comparing the symbols vectors (possibly faster)
function (==){T}(W::GWord{T}, Z::GWord{T})
W.modified && reduce!(W) # reduce could actually clear the flag and recalculate the hash
Z.modified && reduce!(Z)
W.hash == Z.hash && W.symbols == Z.symbols
end
hash{T}(W::GWord{T}) = (W.modified && reduce!(W); W.hash)
(and last lines of reduce! would have W.modified = false ; W.hash = hash(W.symbols))
=#
immutable GWord{T<:GSymbol} <: Word
symbols::Vector{T}
end
typealias FGWord GWord{FGSymbol}
typealias AutWord GWord{AutSymbol}
GWord{T<:GSymbol}(s::T) = GWord{T}([s])
FGWord(s::FGSymbol) = FGWord([s])
IDWord{T<:GSymbol}(::Type{T}) = GWord(one(T))
IDWord{T<:GSymbol}(W::GWord{T}) = IDWord(T)
function length(W::GWord)
return sum([abs(s.pow) for s in W.symbols])
end
one{T}(::Type{GWord{T}}) = IDWord(T)
one{T}(w::GWord{T}) = one(GWord{T})
function inv{T}(W::GWord{T})
if length(W) == 0
return W
else
return prod(reverse([inv(s) for s in W.symbols]))
end
end
function free_group_reduction!(W::GWord)
reduced = true
for i in 1:length(W.symbols) - 1
if W.symbols[i].gen == W.symbols[i+1].gen
reduced = false
p1 = W.symbols[i].pow
p2 = W.symbols[i+1].pow
W.symbols[i+1] = change_pow(W.symbols[i], p1 + p2)
W.symbols[i] = one(W.symbols[i])
end
end
return reduced
end
function reduce!{T}(W::GWord{T}, reduce_func::Function=free_group_reduction!)
if length(W) < 2
deleteat!(W.symbols, find(x -> x.pow == 0, W.symbols))
return W
end
reduced = false
while !reduced
reduced = reduce_func(W)
deleteat!(W.symbols, find(x -> x.pow == 0, W.symbols))
end
return W
end
reduce(W::GWord) = reduce!(deepcopy(W))
function (==){T}(W::GWord{T}, Z::GWord{T})
reduce!(W)
reduce!(Z)
if length(W) != length(Z)
return false
elseif length(W) == 0
return true
else
return W.symbols == Z.symbols
end
end
function show(io::IO, W::GWord)
if length(W) == 0
print(io, "(id)")
else
join(io, [string(s) for s in W.symbols], "*")
end
end
push!(W::GWord, x) = push!(W.symbols, x...)
unshift!(W::GWord, x) = unshift!(W.symbols, x...)
function r_multiply!(W::GWord, x; reduced::Bool=true)
if length(x) > 0
push!(W, x)
end
if reduced
reduce!(W)
end
return W
end
function l_multiply!(W::GWord, x; reduced::Bool=true)
if length(x) > 0
unshift!(W, reverse(x))
end
if reduced
reduce!(W)
end
return W
end
r_multiply(W::GWord, x; reduced::Bool=true) =
r_multiply!(deepcopy(W),x, reduced=reduced)
l_multiply(W::GWord, x; reduced::Bool=true) =
l_multiply!(deepcopy(W),x, reduced=reduced)
(*){T}(W::GWord{T}, Z::GWord{T}) = FreeGroups.r_multiply(W, Z.symbols)
(*)(W::GWord, s::GSymbol) = W*GWord(s)
(*)(s::GSymbol, W::GWord) = GWord(s)*W
function power_by_squaring{T}(x::GWord{T}, p::Integer)
if p < 0
return power_by_squaring(inv(x), -p)
elseif p == 0
return one(x)
elseif p == 1
return deepcopy(x)
elseif p == 2
return x*x
end
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
x *= x
end
y = x
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) >= 0
x *= x
end
y *= x
end
return reduce!(y)
end
(^)(x::GWord, n::Integer) = power_by_squaring(x,n)
type FGAutomorphism{T<:GSymbol}
domain::Vector{T}
image::Vector{GWord{T}}
map::Function
function FGAutomorphism{T}(domain::Vector{T}, image::Vector{GWord{T}}, map::Function)
length(domain) == length(unique(domain)) ||
throw(ArgumentError("The elements of $domain are not unique"))
length(domain) == length(image) ||
throw(ArgumentError("Dimensions of image and domain must match"))
# Set(vcat([[s.gen for s in reduce!(x).symbols]
# for x in image]...)) == Set(s.gen for s in domain) ||
# throw(ArgumentError("Are You sure that $image defines an automorphism??"))
new(domain, image, map)
end
end
function show(io::IO, X::FGAutomorphism)
title = "Endomorphism of Free Group on $(length(X.domain)) generators, sending"
map = ["$x$y" for (x,y) in zip(X.domain, X.image)]
join(io, vcat(title,map), "\n")
end
(==)(f::FGAutomorphism, g::FGAutomorphism) =
f.domain == g.domain && f.image == g.image
function aut_func_from_table(table::Vector{Tuple{Int,Int}}, GroupIdentity=one(FGWord))
if length(table) == 0
# warn("The map is not an automorphism")
nothing
end
return v->reduce(*,GroupIdentity, v[idx]^power for (idx, power) in table)
end
function aut_func_from_word(domain, w::GWord)
table = Vector{Tuple{Int, Int}}()
for s in w.symbols
pair = (findfirst([x.gen for x in domain], s.gen), s.pow)
push!(table, pair)
end
return aut_func_from_table(table)
end
function FGMap(domain::Vector{FGSymbol}, image::Vector{GWord})
function_vector = Vector{Function}()
for word in image
push!(function_vector, aut_func_from_word(domain, word))
end
return v -> Vector{FGWord}([f(v) for f in function_vector])
end
FGAutomorphism(domain::Vector{FGSymbol}, image::Vector{GWord}) =
FGAutomorphism(domain, image, FGMap(domain, image))
FGAutomorphism(domain::Vector{FGSymbol}, image::Vector{FGSymbol}) =
FGAutomorphism(domain, Vector{GWord}(image))
function FGAutomorphism(domain::Vector, image::Vector)
FGAutomorphism(Vector{FGSymbol}(domain), Vector{GWord}(image))
end
function FGAutomorphism(domain, image)
FGAutomorphism([domain...], [image...])
end
"""Computes the composition g∘f of two morphisms"""
function compose(f::FGAutomorphism, g::FGAutomorphism)
if length(f.image) != length(g.domain)
throw(ArgumentError("Cannot compose $f and $g"))
else
h(v) = g.map(f.map(v))
return FGAutomorphism(f.domain, h(f.domain), h)
end
end
(*)(f::FGAutomorphism, g::FGAutomorphism) = compose(f,g)
end