PropertyT.jl/test/quick_tests.jl

90 lines
2.6 KiB
Julia

@testset "Quick tests" begin
@testset "SL(2,F₇)" begin
N = 2
p = 7
halfradius = 3
G = MatrixGroups.SpecialLinearGroup{N}(
SW.Characters.FiniteFields.GF{p},
)
RG, S, sizes = PropertyT.group_algebra(G; halfradius = 3)
Δ = let RG = RG, S = S
RG(length(S)) - sum(RG(s) for s in S)
end
elt = Δ^2
unit = Δ
ub = 0.58578# Inf# 1.5
@testset "standard formulation" begin
status, certified, λ_cert = check_positivity(
elt,
unit;
upper_bound = ub,
halfradius = 2,
optimizer = scs_optimizer(;
eps = 1e-8,
max_iters = 20_000,
accel = -50,
alpha = 1.9,
),
)
@test status == JuMP.OPTIMAL
@test certified
@test λ_cert > 5857 // 10000
m = PropertyT.sos_problem_dual(elt, unit)
PropertyT.solve(
m,
scs_optimizer(;
eps = 1e-8,
max_iters = 10_000,
accel = -50,
alpha = 1.9,
),
)
@test JuMP.termination_status(m) in
(JuMP.ALMOST_OPTIMAL, JuMP.OPTIMAL)
@test JuMP.objective_value(m)
PropertyT.IntervalArithmetic.mid(λ_cert) atol = 1e-2
end
@testset "Wedderburn decomposition" begin
P = PG.PermGroup(PG.perm"(1,2)", PG.Perm(circshift(1:N, -1)))
Σ = Groups.Constructions.WreathProduct(
PG.PermGroup(PG.perm"(1,2)"),
P,
)
act = PropertyT.action_by_conjugation(G, Σ)
wd = SW.WedderburnDecomposition(
Float64,
Σ,
act,
SA.basis(RG),
SA.Basis{UInt16}(@view SA.basis(RG)[1:sizes[halfradius]]),
)
status, certified, λ_cert = check_positivity(
elt,
unit,
wd;
upper_bound = ub,
halfradius = 2,
optimizer = scs_optimizer(;
eps = 1e-8,
max_iters = 10_000,
accel = -50,
alpha = 1.9,
),
)
@test status == JuMP.OPTIMAL
@test certified
@test λ_cert > 5857 // 10000
end
end
end