mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-13 22:05:27 +01:00
88 lines
2.5 KiB
Julia
88 lines
2.5 KiB
Julia
using JuMP
|
|
import MathProgBase: AbstractMathProgSolver
|
|
|
|
function create_product_matrix(basis, limit)
|
|
product_matrix = zeros(Int, (limit,limit))
|
|
basis_dict = Dict{Array, Int}(x => i
|
|
for (i,x) in enumerate(basis))
|
|
for i in 1:limit
|
|
x_inv::eltype(basis) = inv(basis[i])
|
|
for j in 1:limit
|
|
w = x_inv*basis[j]
|
|
product_matrix[i,j] = basis_dict[w]
|
|
# index = findfirst(basis, w)
|
|
# index ≠ 0 || throw(ArgumentError("Product is not supported on basis: $w"))
|
|
# product_matrix[i,j] = index
|
|
end
|
|
end
|
|
return product_matrix
|
|
end
|
|
|
|
function constraints_from_pm(pm, total_length)
|
|
n = size(pm,1)
|
|
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
|
|
for j in 1:n
|
|
Threads.@threads for i in 1:n
|
|
idx = pm[i,j]
|
|
push!(constraints[idx], [i,j])
|
|
end
|
|
end
|
|
return constraints
|
|
end
|
|
|
|
constraints_from_pm(pm) = constraints_from_pm(pm, maximum(pm))
|
|
|
|
function splaplacian_coeff(S, basis, n=length(basis))
|
|
result = spzeros(n)
|
|
result[1] = float(length(S))
|
|
for s in S
|
|
ind = findfirst(basis, s)
|
|
result[ind] += -1.0
|
|
end
|
|
return result
|
|
end
|
|
|
|
function laplacian_coeff(S, basis)
|
|
return full(splaplacian_coeff(S,basis))
|
|
end
|
|
|
|
|
|
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement; upper_bound=Inf)
|
|
N = size(Δ.product_matrix,1)
|
|
const Δ² = Δ*Δ
|
|
@assert length(Δ) == length(matrix_constraints)
|
|
m = JuMP.Model();
|
|
JuMP.@variable(m, A[1:N, 1:N], SDP)
|
|
JuMP.@SDconstraint(m, A >= 0)
|
|
JuMP.@constraint(m, sum(A[i] for i in eachindex(A)) == 0)
|
|
JuMP.@variable(m, κ >= 0.0)
|
|
if upper_bound < Inf
|
|
JuMP.@constraint(m, κ <= upper_bound)
|
|
end
|
|
JuMP.@objective(m, Max, κ)
|
|
|
|
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
|
|
JuMP.@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
|
|
end
|
|
return m
|
|
end
|
|
|
|
function solve_SDP(SDP_problem, solver)
|
|
@show SDP_problem
|
|
@show solver
|
|
|
|
JuMP.setsolver(SDP_problem, solver);
|
|
# @time MathProgBase.writeproblem(SDP_problem, "/tmp/SDP_problem")
|
|
solution_status = JuMP.solve(SDP_problem);
|
|
|
|
if solution_status != :Optimal
|
|
warn("The solver did not solve the problem successfully!")
|
|
end
|
|
@show solution_status
|
|
|
|
κ = JuMP.getvalue(JuMP.getvariable(SDP_problem, :κ))
|
|
A = JuMP.getvalue(JuMP.getvariable(SDP_problem, :A))
|
|
return κ, A
|
|
end
|
|
|