1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 14:15:28 +01:00
PropertyT.jl/property(T).jl

173 lines
4.7 KiB
Julia

using JuMP
import Base: rationalize
function products{T<:Real}(S1::Array{Array{T,2},1}, S2::Array{Array{T,2},1})
result = [0*similar(S1[1])]
for x in S1
for y in S2
push!(result, x*y)
end
end
return unique(result[2:end])
end
function generate_B₂_and_B₄(identity, S₁)
S₂ = unique(products(S₁, S₁));
S₃ = unique(products(S₁, S₂));
S₄ = unique(products(S₂, S₂));
B₂ = unique(vcat([identity],S₁,S₂));
B₄ = unique(vcat(B₂, S₃, S₄));
@assert B₄[1:length(B₂)] == B₂
return B₂, B₄;
end
function read_GAP_raw_list(filename::String)
return eval(parse(String(read(filename))))
end
function create_product_matrix(matrix_constraints)
l = length(matrix_constraints)
product_matrix = zeros(Int, (l, l))
for (index, pairs) in enumerate(matrix_constraints)
for (i,j) in pairs
product_matrix[i,j] = index
end
end
return product_matrix
end
function create_product_matrix(basis::Array{Array{Float64,2},1}, limit::Int)
product_matrix = zeros(Int, (limit,limit))
constraints = [Array{Int,1}[] for x in 1:length(basis)]
for i in 1:limit
x_inv = inv(basis[i])
for j in 1:limit
w = x_inv*basis[j]
index = findfirst(basis, w)
if 0 < index limit
product_matrix[i,j] = index
push!(constraints[index],[i,j])
end
end
end
return product_matrix, constraints
end
function Laplacian_sparse(S::Array{Array{Float64,2},1},
basis::Array{Array{Float64,2},1})
squares = unique(vcat([basis[1]], S, products(S,S)))
result = spzeros(length(basis))
result[1] = length(S)
for s in S
ind = find(x -> x==s, basis)
result[ind] += -1
end
return result
end
function Laplacian(S::Array{Array{Float64,2},1},
basis:: Array{Array{Float64,2},1})
return full(Laplacian_sparse(S,basis))
end
function prepare_Laplacian_and_constraints{T}(S::Vector{Array{T,2}};)
identity = eye(S[1])
B₂, B₄ = generate_B₂_and_B₄(identity, S)
product_matrix, matrix_constraints = create_product_matrix(B₄,length(B₂));
L= Laplacian(S, B₄);
return GroupAlgebraElement(L, product_matrix), matrix_constraints
end
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement)
N = size(Δ.product_matrix,1)
const Δ² = Δ*Δ
@assert length(Δ) == length(matrix_constraints)
m = Model();
@variable(m, A[1:N, 1:N], SDP)
@SDconstraint(m, A >= zeros(size(A)))
@variable(m, κ >= 0.0)
@objective(m, Max, κ)
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
end
return m
end
function solve_for_property_T{T}(S₁::Vector{Array{T,2}}, solver; verbose=true)
Δ, matrix_constraints = prepare_Laplacian_and_constraints(S₁)
problem = create_SDP_problem(matrix_constraints, Δ);
@show solver
setsolver(problem, solver);
verbose && @show problem
solution_status = solve(problem);
verbose && @show solution_status
if solution_status != :Optimal
throw(ExceptionError("The solver did not solve the problem successfully!"))
else
κ = SL_3ZZ.objVal;
A = getvalue(getvariable(SL_3ZZ, :A));;
end
return κ, A
end
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
return Δ*Δ - κ*Δ
end
function resulting_SOS{T<:Number}(sqrt_matrix::Array{T,2},
elt::GroupAlgebraElement{T})
result = zeros(elt.coefficients)
zzz = zeros(elt.coefficients)
L = size(sqrt_matrix,2)
for i in 1:L
zzz[1:L] = view(sqrt_matrix, :,i)
new_base = GroupAlgebraElement(zzz, elt.product_matrix)
result += (new_base*new_base).coefficients
end
return GroupAlgebraElement{T}(result, elt.product_matrix)
end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
sqrt_corrected = similar(sqrt_matrix)
l = size(sqrt_matrix,2)
for i in 1:l
col = view(sqrt_matrix,:,i)
sqrt_corrected[:,i] = col - sum(col)//l
# @assert sum(sqrt_corrected[:,i]) == 0
end
return sqrt_corrected
end
function check_solution{T<:Number}(κ::T,
sqrt_matrix::Array{T,2},
Δ::GroupAlgebraElement{T})
eoi = EOI(Δ, κ)
result = resulting_SOS(sqrt_matrix, Δ)
L₁_dist = norm(result - eoi,1)
return eoi - result, L₁_dist
end
function rationalize{T<:Integer, S<:Real}(::Type{T},
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
r(x) = rationalize(T, x, tol=tol)
return r.(X)
end;