1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 22:20:28 +01:00
PropertyT.jl/src/checksolution.jl

160 lines
5.7 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Base: rationalize
using ValidatedNumerics
ValidatedNumerics.setrounding(Interval, :correct)
# ValidatedNumerics.setrounding(Interval, :fast) #which is slower??
ValidatedNumerics.setformat(:standard)
# setprecision(Interval, 53) # slightly faster than 256
function EOI{T<:Number}(Δ::GroupRingElem{T}, λ::T)
return Δ*Δ - λ*Δ
end
function groupring_square(vect, elt)
zzz = zeros(eltype(vect), elt.coeffs)
zzz[1:length(vect)] = vect
return GroupRings.groupring_mult(zzz, zzz, parent(elt).pm)
end
function compute_SOS(sqrt_matrix, elt)
n = size(sqrt_matrix,2)
T = eltype(sqrt_matrix)
# result = zeros(T, length(elt.coeffs))
# for i in 1:n
# result += groupring_square(sqrt_matrix[:,i], elt)
# end
result = @parallel (+) for i in 1:n
groupring_square(sqrt_matrix[:,i], elt)
end
return GroupRingElem(result, parent(elt))
end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
sqrt_corrected = similar(sqrt_matrix)
l = size(sqrt_matrix,2)
for i in 1:l
col = sqrt_matrix[:,i]
sqrt_corrected[:,i] = col - sum(col)//l
# @assert sum(sqrt_corrected[:,i]) == 0
end
return sqrt_corrected
end
import ValidatedNumerics
function (±){T<:Number}(X::AbstractArray{T}, tol::Real)
r{T}(x::T) = (x == zero(T)? @interval(0) : x ± tol)
return r.(X)
end
(±)(X::GroupRingElem, tol::Real) = GroupRingElem(X.coeffs ± tol, parent(X))
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
r(x) = rationalize(T, x, tol=tol)
return r.(X)
end
(x, tol::Real) = rationalize(BigInt, x, tol=tol)
function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}; len=4)
SOS = compute_SOS(sqrt_matrix, Δ)
SOS_diff = EOI(Δ, λ) - SOS
eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "λ = (≈$(@sprintf("%.10f", float(λ)))")
ɛ_dist = GroupRings.augmentation(SOS_diff)
if ɛ_dist 0//1
warn(logger, "The SOS is not in the augmentation ideal, numbers below are meaningless!")
end
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) = $ɛ_dist")
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ = $(@sprintf("%.10f", float(eoi_SOS_L1_dist)))")
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
return distance_to_cone
end
function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,2}, Δ::GroupRingElem{T}; len=4)
SOS = compute_SOS(sqrt_matrix, Δ)
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))")
λ_int = @interval(λ)
Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ))
SOS_diff = EOI(Δ_int, λ_int) - SOS
eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "λ = (≈≥$(@sprintf("%.10f",float(λ))))")
ɛ_dist = GroupRings.augmentation(SOS_diff)
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)")
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)")
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
return distance_to_cone
end
function distance_to_cone{T<:AbstractFloat}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}; len=4)
SOS = compute_SOS(sqrt_matrix, Δ)
SOS_diff = EOI(Δ, λ) - SOS
eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "λ = ")
ɛ_dist = GroupRings.augmentation(SOS_diff)
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))")
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))")
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
return distance_to_cone
end
function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
tol=1e-7, rational=false, len=4)
isapprox(eigvals(P), abs(eigvals(P)), atol=tol) ||
warn("The solution matrix doesn't seem to be positive definite!")
# @assert P == Symmetric(P)
Q = real(sqrtm(P))
info(logger, "------------------------------------------------------------")
info(logger, "")
info(logger, "Checking in floating-point arithmetic...")
t = @timed fp_distance = distance_to_cone(λ, Q, Δ, len=len)
info(logger, timed_msg(t))
info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))")
info(logger, "------------------------------------------------------------")
if fp_distance 0
return fp_distance
end
info(logger, "Projecting columns of rationalized Q to the augmentation ideal...")
δ = eps(λ)
Q_ = (Q, δ)
t = @timed Q_ω = correct_to_augmentation_ideal(Q_)
info(logger, timed_msg(t))
λ_ = (λ, δ)
Δ_ = (Δ, δ)
info(logger, "Checking in interval arithmetic")
Q_ω_int = Float64.(Q_ω) ± δ
t = @timed Interval_dist_to_ΣSq = distance_to_cone(λ_, Q_ω_int, Δ_, len=len)
info(logger, timed_msg(t))
info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)")
info(logger, "------------------------------------------------------------")
if Interval_dist_to_ΣSq.lo 0 || !rational
return Interval_dist_to_ΣSq
else
info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...")
t = @timed _dist_to_ΣSq = distance_to_cone(λ_, Q_ω, Δ_, len=len)
info(logger, timed_msg(t))
@assert isa(_dist_to_ΣSq, Rational)
info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(_dist_to_ΣSq,8)))")
info(logger, "------------------------------------------------------------")
return _dist_to_ΣSq
end
end