mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-14 22:20:28 +01:00
89 lines
3.1 KiB
Julia
89 lines
3.1 KiB
Julia
module SemiDirectProduct
|
|
|
|
import Base: convert, show, isequal, ==, size, inv
|
|
import Base: +, -, *, //
|
|
|
|
export SemiDirectProductElement, matrix_repr
|
|
|
|
"""
|
|
Implements elements of a semidirect product of groups H and N, where N is normal in the product. Usually written as H ⋉ N.
|
|
The multiplication inside semidirect product is defined as
|
|
(h₁, n₁) ⋅ (h₂, n₂) = (h₁h₂, n₁φ(h₁)(n₂)),
|
|
where φ:H → Aut(N) is a homomorphism.
|
|
|
|
In the case below we implement H = GL(n,K) and N = Kⁿ, the Affine Group (i.e. GL(n,K) ⋉ Kⁿ) where elements of GL(n,K) act on vectors in Kⁿ via matrix multiplication.
|
|
# Arguments:
|
|
* `h::Array{T,2}` : square invertible matrix (element of GL(n,K))
|
|
* `n::Vector{T,1}` : vector in Kⁿ
|
|
* `φ = φ(h,n) = φ(h)(n)` :2-argument function which defines the action of GL(n,K) on Kⁿ; matrix-vector multiplication by default.
|
|
"""
|
|
immutable SemiDirectProductElement{T<:Number}
|
|
h::Array{T,2}
|
|
n::Vector{T}
|
|
φ::Function
|
|
|
|
function SemiDirectProductElement(h::Array{T,2},n::Vector{T},φ::Function)
|
|
# size(h,1) == size(h,2)|| throw(ArgumentError("h has to be square matrix"))
|
|
det(h) ≠ 0 || throw(ArgumentError("h has to be invertible!"))
|
|
new(h,n,φ)
|
|
end
|
|
end
|
|
|
|
SemiDirectProductElement{T}(h::Array{T,2}, n::Vector{T}, φ) =
|
|
SemiDirectProductElement{T}(h,n,φ)
|
|
|
|
SemiDirectProductElement{T}(h::Array{T,2}, n::Vector{T}) =
|
|
SemiDirectProductElement(h,n,*)
|
|
|
|
SemiDirectProductElement{T}(h::Array{T,2}) =
|
|
SemiDirectProductElement(h,zeros(h[:,1]))
|
|
|
|
SemiDirectProductElement{T}(n::Vector{T}) =
|
|
SemiDirectProductElement(eye(eltype(n), n))
|
|
|
|
convert{T<:Number}(::Type{T}, X::SemiDirectProductElement) =
|
|
SemiDirectProductElement(convert(Array{T,2},X.h),
|
|
convert(Vector{T},X.n),
|
|
X.φ)
|
|
|
|
size(X::SemiDirectProductElement) = (size(X.h), size(X.n))
|
|
|
|
matrix_repr{T}(X::SemiDirectProductElement{T}) =
|
|
[X.h X.n; zeros(T, 1, size(X.h,2)) [1]]
|
|
|
|
show{T}(io::IO, X::SemiDirectProductElement{T}) = print(io,
|
|
"Element of SemiDirectProduct over $T of size $(size(X)):\n",
|
|
matrix_repr(X))
|
|
|
|
function isequal{T}(X::SemiDirectProductElement{T}, Y::SemiDirectProductElement{T})
|
|
X.h == Y.h || return false
|
|
X.n == Y.n || return false
|
|
X.φ == Y.φ || return false
|
|
return true
|
|
end
|
|
|
|
function isequal{T,S}(X::SemiDirectProductElement{T}, Y::SemiDirectProductElement{S})
|
|
W = promote_type(T,S)
|
|
warn("Comparing elements with different coefficients! trying to promoting to $W")
|
|
X = convert(W, X)
|
|
Y = convert(W, Y)
|
|
return isequal(X,Y)
|
|
end
|
|
|
|
(==)(X::SemiDirectProductElement, Y::SemiDirectProductElement) = isequal(X, Y)
|
|
|
|
function semidirect_multiplication{T}(X::SemiDirectProductElement{T},
|
|
Y::SemiDirectProductElement{T})
|
|
size(X) == size(Y) || throw(ArgumentError("trying to multiply elements from different groups!"))
|
|
return SemiDirectProductElement(X.h*Y.h, X.n + X.φ(X.h, Y.n))
|
|
end
|
|
|
|
(*){T}(X::SemiDirectProductElement{T}, Y::SemiDirectProductElement{T}) =
|
|
semidirect_multiplication(X,Y)
|
|
|
|
inv{T}(X::SemiDirectProductElement{T}) =
|
|
SemiDirectProductElement(inv(X.h), X.φ(inv(X.h), -X.n))
|
|
|
|
|
|
end
|