1
0
mirror of https://github.com/kalmarek/SmallHyperbolic synced 2024-11-09 04:05:27 +01:00
SmallHyperbolic/adj_psl2_eigvals.jl

235 lines
6.4 KiB
Julia
Raw Normal View History

2020-05-26 00:10:24 +02:00
using RamanujanGraphs
using LinearAlgebra
using Nemo
2020-09-03 10:58:44 +02:00
using ArgParse
2020-05-26 00:10:24 +02:00
2020-06-09 16:18:00 +02:00
using Logging
using Dates
2020-05-26 00:10:24 +02:00
2020-06-09 16:18:00 +02:00
include("src/nemo_utils.jl")
2020-05-26 00:10:24 +02:00
2020-06-09 16:18:00 +02:00
function SL2p_gens(p)
if p == 31
a, b = let
a = SL₂{p}([8 14; 4 11])
b = SL₂{p}([23 0; 14 27])
@assert isone(a^10)
@assert isone(b^10)
2020-09-03 14:11:29 +02:00
a, b
end
elseif p == 41
a, b = let
a = SL₂{p}([0 28; 19 35])
b = SL₂{p}([38 27; 2 9])
@assert isone(a^10)
@assert isone(b^10)
a, b
end
elseif p == 109
2020-06-09 10:52:55 +02:00
a, b = let
a = SL₂{p}([0 1; 108 11])
b = SL₂{p}([57 2; 52 42])
2020-05-26 00:10:24 +02:00
@assert isone(a^10)
@assert isone(b^10)
a, b
end
elseif p == 131
2020-06-09 10:52:55 +02:00
a, b = let
2020-05-26 00:10:24 +02:00
a = SL₂{p}([-58 -24; -58 46])
b = SL₂{p}([0 -3; 44 -12])
@assert isone(a^10)
@assert isone(b^10)
a, b
end
else
@warn "no special set of generators for prime $p"
2020-06-09 10:52:55 +02:00
a, b = let
2020-05-26 00:10:24 +02:00
a = SL₂{p}(1, 0, 1, 1)
b = SL₂{p}(1, 1, 0, 1)
a, b
end
end
2020-06-09 16:18:00 +02:00
return a,b
2020-05-26 00:10:24 +02:00
end
2020-06-09 16:18:00 +02:00
function adjacency(ϱ, CC, a, b)
A = matrix(CC, ϱ(a))
B = matrix(CC, ϱ(b))
2020-05-26 00:10:24 +02:00
2020-06-09 16:18:00 +02:00
return sum(A^i for i = 1:4) + sum(B^i for i = 1:4)
end
2020-05-26 00:10:24 +02:00
2020-09-03 10:58:44 +02:00
function parse_our_args()
s = ArgParseSettings()
2020-09-03 12:36:58 +02:00
@add_arg_table! s begin
2020-09-03 10:58:44 +02:00
"-p"
help = "the prime p for which to use PSL(2,p)"
arg_type = Int
required = true
"-a"
help = "generator a (optional)"
"-b"
help = "generator b (optional)"
"--ab"
help = "array of generators a and b (optional)"
2020-09-03 10:58:44 +02:00
end
result = parse_args(s)
for key in ["a", "b", "ab"]
2020-09-03 10:58:44 +02:00
val = get(result, key, "")
if val != nothing
result[key] = eval(Meta.parse(val))
else
delete!(result, key)
end
end
val = get(result, "ab", "")
if val != ""
result["a"] = val[1]
result["b"] = val[2]
end
2020-09-03 10:58:44 +02:00
result
end
parsed_args = parse_our_args()
2020-06-09 16:18:00 +02:00
const p = try
2020-09-03 10:58:44 +02:00
p = parsed_args["p"]
2020-06-09 16:18:00 +02:00
RamanujanGraphs.Primes.isprime(p)
p
catch ex
@error "You need to provide a prime, ex: `julia adj_psl2_eigvals.jl -p 31`"
2020-06-09 16:18:00 +02:00
rethrow(ex)
end
2020-05-26 00:10:24 +02:00
2020-06-09 16:18:00 +02:00
const LOGFILE = "SL(2,$p)_eigvals_$(now()).log"
open(joinpath("log", LOGFILE), "w") do io
with_logger(SimpleLogger(io)) do
CC = AcbField(128)
a,b = SL2p_gens(p)
2020-09-03 10:58:44 +02:00
a = SL₂{p}(get(parsed_args, "a", a))
b = SL₂{p}(get(parsed_args, "b", b))
@info "Generators" a b
2020-06-09 16:18:00 +02:00
Borel_cosets = let p = p, (a,b) = (a,b)
SL2p, sizes =
RamanujanGraphs.generate_balls([a, b, inv(a), inv(b)], radius = 21)
@assert sizes[end] == RamanujanGraphs.order(SL₂{p})
RamanujanGraphs.CosetDecomposition(SL2p, Borel(SL₂{p}))
2020-05-26 00:10:24 +02:00
end
2020-09-03 12:36:58 +02:00
all_large_evs = []
2020-06-09 16:18:00 +02:00
let α = RamanujanGraphs.generator(RamanujanGraphs.GF{p}(0))
2020-06-09 16:18:00 +02:00
for j = 0:(p-1)÷4
h = PrincipalRepr(
α => root_of_unity(CC, (p - 1) ÷ 2, j),
Borel_cosets,
)
@time adj = adjacency(h, CC, a, b)
2020-06-09 16:18:00 +02:00
try
@time ev = let evs = safe_eigvals(adj)
_count_multiplicites(evs)
end
2020-09-03 12:36:58 +02:00
all_large_evs = vcat(all_large_evs, [Float64(real(x[1])) for x in ev[1:2]])
2020-06-09 16:18:00 +02:00
@info "Principal Series Representation $j" ev[1:2] ev[end]
catch ex
@error "Principal Series Representation $j failed" ex
ex isa InterruptException && rethrow(ex)
end
2020-05-26 00:10:24 +02:00
end
2020-06-09 16:18:00 +02:00
end
let α = RamanujanGraphs.generator(RamanujanGraphs.GF{p}(0)),
β = RamanujanGraphs.generator_min(QuadraticExt(α))
2020-05-26 00:10:24 +02:00
2020-06-09 16:18:00 +02:00
if p % 4 == 1
ub = (p - 1) ÷ 4
ζ = root_of_unity(CC, (p + 1) ÷ 2, 1)
else # p % 4 == 3
ub = (p + 1) ÷ 4
ζ = root_of_unity(CC, (p + 1), 1)
2020-05-26 00:10:24 +02:00
end
2020-06-09 16:18:00 +02:00
for k = 1:ub
h = DiscreteRepr(
RamanujanGraphs.GF{p}(1) => root_of_unity(CC, p),
β => ζ^k,
)
@time adj = adjacency(h, CC, a, b)
try
@time ev = let evs = safe_eigvals(adj)
_count_multiplicites(evs)
end
2020-09-03 12:36:58 +02:00
all_large_evs = vcat(all_large_evs, [Float64(real(x[1])) for x in ev[1:2]])
2020-06-09 16:18:00 +02:00
@info "Discrete Series Representation $k" ev[1:2] ev[end]
catch ex
@error "Discrete Series Representation $k : failed" ex
ex isa InterruptException && rethrow(ex)
end
end
2020-05-26 00:10:24 +02:00
end
2020-09-03 12:36:58 +02:00
all_large_evs = sort(all_large_evs, rev=true)
λ = all_large_evs[2]
ε = (λ - 3)/5
α = acos(ε)
α_deg = α/pi*180
@info "Numerically" λ ε α α_deg
2020-06-09 16:18:00 +02:00
end # with_logger
end # open(logfile)
2020-05-26 00:10:24 +02:00
2020-06-09 10:52:55 +02:00
#
2020-05-26 00:10:24 +02:00
# using RamanujanGraphs.LightGraphs
# using Arpack
#
2020-06-09 10:52:55 +02:00
# Γ, eigenvalues = let p = 109,
# a = PSL₂{p}([ 0 1; 108 11]),
# b = PSL₂{p}([ 57 2; 52 42])
2020-05-26 00:10:24 +02:00
#
# S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]])
#
# @info "Generating set S of $(eltype(S))" S
2020-06-09 10:52:55 +02:00
# @time Γ, verts, vlabels, elabels =
# RamanujanGraphs.cayley_graph(RamanujanGraphs.order(PSL₂{p}), S)
#
# @assert all(LightGraphs.degree(Γ,i) == length(S) for i in vertices(Γ))
# @assert LightGraphs.nv(Γ) == RamanujanGraphs.order(PSL₂{p})
# A = adjacency_matrix(Γ)
# @time eigenvalues, _ = eigs(A, nev=5)
# @show Γ eigenvalues
# Γ, eigenvalues
# end
#
# let p = 131,
# a = PSL₂{p}([-58 -24; -58 46]),
# b = PSL₂{p}([0 -3; 44 -12])
#
# S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]])
#
# @info "Generating set S of $(eltype(S))" S
# @time Γ, verts, vlabels, elabels =
# RamanujanGraphs.cayley_graph(RamanujanGraphs.order(PSL₂{p}), S)
#
2020-05-26 00:10:24 +02:00
# @assert all(LightGraphs.degree(Γ,i) == length(S) for i in vertices(Γ))
2020-06-09 10:52:55 +02:00
# @assert LightGraphs.nv(Γ) == RamanujanGraphs.order(PSL₂{p})
2020-05-26 00:10:24 +02:00
# A = adjacency_matrix(Γ)
# @time eigenvalues, _ = eigs(A, nev=5)
# @show Γ eigenvalues
# Γ, eigenvalues
# end