mirror of
https://github.com/kalmarek/SmallHyperbolic
synced 2024-12-25 02:15:29 +01:00
add tables csv by Stefan
This commit is contained in:
parent
fbb0008457
commit
1899c7b5d8
22
data/table_2_4_4.csv
Normal file
22
data/table_2_4_4.csv
Normal file
@ -0,0 +1,22 @@
|
||||
order1 & order2 & order3 & index & presentation length & hyperbolic & witnesses for non-hyperbolicity & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
|
||||
6 & 40 & 40 & 0 & 45 & No & a^-1 * c * b * c * a^-1 * c * b * c^-1, b * c * a^-1 * c * b * c * a^-1 * c^-1 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 1)] & [ 5, 7 ] & 28
|
||||
6 & 40 & 48 & 0 & 37 & No & b * c * a * c^-1 * b * c^-1 * a^-1 * c^-1, a^-1 * c * b * c * a * c * b * c^-1 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 3), ($A_{3}(3)$, 1)] & [ 3, 5, 6 ] & 28
|
||||
6 & 40 & 54 & 0 & 49 & No & a * c^-1 * b^-1 * c^-1 * a * c * b * c, b^-1 * c * a^-1 * c^-1 * b * c^-1 * a * c & Yes & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{4}(4)$, 1)] & [ 3, 5, 10, 15, 20, 25 ] & 28
|
||||
6 & 40 & 54 & 2 & 49 & No & b * c * a * c^-1 * b * c * a^-1 * c, a * c^-1 * b^-1 * c * a^-1 * c * b^-1 * c & Yes & No & 1& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1)] & [ 3, 5, 9 ] & 28
|
||||
6 & 48 & 48 & 0 & 29 & No & a^-1 * c^-1 * b * c, b * c * a * c & Yes & No & 3& []& [($B_{2}(3)$, 1), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1)] & [ 3, 4 ] & 28
|
||||
6 & 48 & 54 & 0 & 41 & No & b * c * a * c^-1 * b * c * a * c^-1, a^-1 * c * b * c * a^-1 * c^-1 * b^-1 * c^-1 & Yes & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 10, 11, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] & 28
|
||||
6 & 48 & 54 & 2 & 41 & No & b * c * a * c^-1 * b * c * a^-1 * c, a * c^-1 * b^-1 * c^-1 * a^-1 * c^-1 * b^-1 * c & Yes & No & 3& []& [(${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1)] & [ 3, 4 ] & 28
|
||||
6 & 54 & 54 & 0 & 53 & No & a * c^-1 * b^-1 * c^-1 * a * c * b * c, b^-1 * c^-1 * a^-1 * c * b * c^-1 * a * c & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{4}(4)$, 2)] & [ 3, 9, 27 ] & 28
|
||||
6 & 54 & 54 & 2 & 53 & No & a^-1 * c * b^-1 * c * a * c^-1 * b * c, b^-1 * c * a^-1 * c * b * c^-1 * a * c & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1)] & [ 3, 9, 12, 15, 18, 21, 24, 27 ] & 28
|
||||
6 & 54 & 54 & 8 & 53 & No & a^-1 * c^-1 * b * c, b^-1 * c^-1 * a * c & Yes & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 4)] & [ 3, 9, 12, 18, 21, 24, 27 ] & 28
|
||||
8 & 40 & 40 & 0 & 45 & No & a^-1 * c^-1 * b * c, b * c^-1 * a^-1 * c & Yes & No & 0& [L_2(\infty^4)]& [($B_{2}(3)$, 1), ($C_{2}(4)$, 2), ($\textrm{Alt}_{10}$, 2), ($B_{2}(5)$, 5), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 10, 11, 15, 20, 21, 25, 26 ] & 28
|
||||
8 & 40 & 48 & 0 & 37 & Yes & & ? & No & 0& [L_2(3^2)]& [($B_{2}(5)$, 4)] & [ 5, 6 ] & 28
|
||||
8 & 40 & 54 & 0 & 49 & Yes & & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 4)] & [ 6 ] & 28
|
||||
8 & 40 & 54 & 2 & 49 & No & b * c * a * c^-1 * b * c^-1 * a * c, a^-1 * c * b^-1 * c * a^-1 * c * b^-1 * c & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 4), ($\textrm{Alt}_{10}$, 3), ($A_{3}(3)$, 2), (${}^2A_{4}(4)$, 1)] & [ 6, 10, 12, 15, 16, 21, 22, 27, 28 ] & 28
|
||||
8 & 48 & 48 & 0 & 29 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 3), ($C_{3}(2)$, 4), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 5, 11, 19, 25, 28 ] & 28
|
||||
8 & 48 & 48 & 1 & 29 & No & b^-1 * c^-1 * a^-1 * c * b * c * a * c^-1, a * c^-1 * b * c * a^-1 * c * b^-1 * c^-1 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($B_{2}(3)$, 2), ($C_{3}(2)$, 1), ($B_{2}(5)$, 3), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 7, 11, 15, 19, 22, 23, 24, 25, 26, 27, 28 ] & 28
|
||||
8 & 48 & 54 & 0 & 41 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 1)] & [ 3, 4, 9 ] & 28
|
||||
8 & 48 & 54 & 2 & 41 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 2), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 2), (${}^2A_{4}(4)$, 1)] & [ 3, 4, 10, 13, 20, 26, 28 ] & 28
|
||||
8 & 54 & 54 & 0 & 53 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 28
|
||||
8 & 54 & 54 & 2 & 53 & No & a^-1 * c^-1 * b^-1 * c, b * c * a * c & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 4)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] & 28
|
||||
8 & 54 & 54 & 8 & 53 & No & a * c * b^-1 * c^-1 * a^-1 * c * b * c^-1, b^-1 * c * a * c^-1 * b * c * a^-1 * c^-1 & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2)] & [ 3, 4, 9, 18, 27, 28 ] & 28
|
|
83
data/table_3_3_3.csv
Normal file
83
data/table_3_3_3.csv
Normal file
@ -0,0 +1,83 @@
|
||||
order1 & order2 & order3 & index & presentation length & hyperbolic & witnesses for non-hyperbolicity & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
|
||||
14 & 14 & 14 & 0 & 27 & ? & & Yes & Yes & 0& [L_2(7)]& [(${}^2A_{2}(9)$, 1), (${}^2A_{2}(25)$, 1)] & [ ] & 36
|
||||
14 & 14 & 14 & 1 & 27 & No & c^-1 * a * b^-1 * a * c * a * b^-1 * a, a^-1 * b * c * a * b^-1 * a * c^-1 * b & ? & Yes & 1& []& [] & [ 3 ] & 36
|
||||
14 & 14 & 14 & 2 & 27 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & Yes & 0& []& [($\textrm{Alt}_{7}$, 1)] & [ 7 ] & 36
|
||||
14 & 14 & 14 & 6 & 27 & No & c * a * b * a, b^-1 * a^-1 * c * a & Yes & Yes & 1& []& [($A_{2}(8)$, 2)] & [ 3 ] & 36
|
||||
14 & 14 & 16 & 0 & 27 & No & c * a * b * a, a^-1 * b^-1 * c^-1 * b & Yes & No & 1& [L_2(7)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1)] & [ 3, 8 ] & 36
|
||||
14 & 14 & 16 & 1 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1, b^-1 * a * c * a^-1 * b^-1 * a * c * a^-1 & ? & ? & 0& [L_2(7)]& [] & [ ] & 36
|
||||
14 & 14 & 16 & 4 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a, a^-1 * b * c^-1 * a * b * a * c * b^-1 & ? & ? & 0& []& [] & [ ] & 36
|
||||
14 & 14 & 16 & 5 & 27 & No & c * a * b * a * c^-1 * b * a * c^-1 * b * a^-1, b * a^-1 * c^-1 * a * b^-1 * c^-1 * a * b * c * a^-1 & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 14 & 18 & 0 & 33 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & ? & 1& []& [(${}^2A_{2}(9)$, 1)] & [ 3 ] & 36
|
||||
14 & 14 & 18 & 4 & 33 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 14 & 24 & 0 & 35 & Yes & & ? & ? & 1& [L_2(7)]& [] & [ 3 ] & 36
|
||||
14 & 14 & 24 & 1 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & No & 1& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(25)$, 1)] & [ 3, 7 ] & 36
|
||||
14 & 14 & 24 & 4 & 35 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 1& []& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{M}_{22}$, 1)] & [ 3, 8 ] & 36
|
||||
14 & 14 & 24 & 5 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & Yes & ? & 1& []& [($\textrm{Alt}_{7}$, 1)] & [ 3, 7 ] & 36
|
||||
14 & 14 & 26 & 0 & 35 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 14 & 26 & 1 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & ? & 0& []& [($A_{2}(9)$, 1)] & [ 14 ] & 36
|
||||
14 & 14 & 26 & 3 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ ] & 36
|
||||
14 & 14 & 26 & 4 & 35 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 0& []& [] & [ ] & 36
|
||||
14 & 14 & 26 & 5 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 14 & 26 & 7 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 16 & 16 & 0 & 27 & No & b^-1 * a * c * b * a^-1 * c^-1, b^-1 * c * a * b^-1 * c^-1 * a & ? & No & 0& [L_2(7)]& [] & [ ] & 36
|
||||
14 & 16 & 16 & 1 & 27 & No & a^-1 * b * c * a^-1 * b * a * c^-1 * a^-1 * b^-1 * a * c^-1 * b^-1, c * a^-1 * b * a * c * a^-1 * b^-1 * a * c^-1 * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3, 4 ] & 36
|
||||
14 & 16 & 18 & 0 & 33 & No & a * c * b^-1 * a^-1 * c * b, c^-1 * a^-1 * b^-1 * c^-1 * a * b & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 16 & 24 & 0 & 35 & Yes & & ? & No & 1& [L_2(7)]& [] & [ 3 ] & 36
|
||||
14 & 16 & 24 & 1 & 35 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
|
||||
14 & 16 & 26 & 0 & 35 & Yes & & ? & ? & 0& []& [] & [ ] & 36
|
||||
14 & 16 & 26 & 1 & 35 & Yes & & ? & No & 1& []& [] & [ 3 ] & 36
|
||||
14 & 16 & 26 & 3 & 35 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 16 & 26 & 7 & 35 & Yes & & ? & ? & 0& []& [] & [ ] & 36
|
||||
14 & 18 & 18 & 0 & 39 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & No & 2& []& [] & [ 3 ] & 36
|
||||
14 & 18 & 24 & 0 & 41 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 2& []& [] & [ 3 ] & 36
|
||||
14 & 18 & 26 & 0 & 41 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 18 & 26 & 3 & 41 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 24 & 24 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 7, 8, 22, 28, 29, 31, 35, 36 ] & 36
|
||||
14 & 24 & 24 & 1 & 43 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 36
|
||||
14 & 24 & 26 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 24 & 26 & 1 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 24 & 26 & 3 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 24 & 26 & 7 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 26 & 26 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 0& []& [] & [ ] & 36
|
||||
14 & 26 & 26 & 1 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 26 & 26 & 3 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 26 & 26 & 4 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
14 & 26 & 26 & 5 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ 14 ] & 36
|
||||
14 & 26 & 26 & 15 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ 13 ] & 36
|
||||
16 & 16 & 16 & 0 & 27 & No & c * a * b * a, a^-1 * b^-1 * c^-1 * b & Yes & No & 1& []& [(${}^2A_{2}(9)$, 1), ($\textrm{J}_{2}$, 1), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2)] & [ 3, 4 ] & 36
|
||||
16 & 16 & 16 & 1 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1, b * a * c^-1 * a^-1 * b^-1 * a * c * a^-1 & Yes & No & 0& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), (${}^2A_{2}(81)$, 2)] & [ 5, 29 ] & 36
|
||||
16 & 16 & 18 & 0 & 33 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & Yes & No & 1& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4 ] & 36
|
||||
16 & 16 & 24 & 0 & 35 & Yes & & Yes & No & 1& []& [($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 3, 4, 10, 34, 36 ] & 36
|
||||
16 & 16 & 24 & 1 & 35 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & Yes & No & 1& []& [($\textrm{Alt}_{9}$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 21, 29, 33, 34 ] & 36
|
||||
16 & 16 & 26 & 0 & 35 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
|
||||
16 & 16 & 26 & 1 & 35 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & ? & No & 0& [L_2(13)]& [] & [ 16, 30 ] & 36
|
||||
16 & 18 & 18 & 0 & 39 & No & b^-1 * a^-1 * c^-1 * a^-1 * b * a * c^-1 * a, c^-1 * a * b * a * c^-1 * a * b * a & Yes & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4 ] & 36
|
||||
16 & 18 & 24 & 0 & 41 & Yes & & Yes & No & 2& []& [($\textrm{Alt}_{10}$, 1)] & [ 3, 4, 10, 19, 34 ] & 36
|
||||
16 & 18 & 26 & 0 & 41 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
|
||||
16 & 24 & 24 & 0 & 43 & Yes & & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 15, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
|
||||
16 & 24 & 24 & 1 & 43 & Yes & & Yes & No & 2& []& [($C_{3}(2)$, 2)] & [ 3, 4, 5, 17, 18, 19, 21, 22, 27, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
|
||||
16 & 24 & 26 & 0 & 43 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
|
||||
16 & 24 & 26 & 1 & 43 & Yes & & ? & ? & 1& [L_2(13)]& [] & [ 3 ] & 36
|
||||
16 & 26 & 26 & 0 & 43 & Yes & & ? & No & 1& []& [] & [ 3, 26 ] & 36
|
||||
16 & 26 & 26 & 1 & 43 & Yes & & ? & ? & 0& [L_2(13)]& [($A_{2}(3)$, 1)] & [ ] & 36
|
||||
16 & 26 & 26 & 3 & 43 & Yes & & Yes & No & 0& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 26 ] & 36
|
||||
16 & 26 & 26 & 5 & 43 & Yes & & Yes & ? & 1& [L_2(13)]& [($A_{2}(3)$, 1), ($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 14, 26, 28, 29 ] & 36
|
||||
18 & 18 & 18 & 0 & 45 & No & c * a * b * a, b * a * c * a & Yes & No & 3& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 27, 36 ] & 36
|
||||
18 & 18 & 24 & 0 & 47 & No & c * a * b * a, b * a * c * a & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 12, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
|
||||
18 & 18 & 26 & 0 & 47 & No & c * a * b * a, b * a * c * a & Yes & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 36
|
||||
18 & 24 & 24 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
|
||||
18 & 24 & 26 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 2& []& [] & [ 3, 27 ] & 36
|
||||
18 & 26 & 26 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 1& []& [($G_{2}(3)$, 2)] & [ 3, 13 ] & 36
|
||||
18 & 26 & 26 & 1 & 49 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 27 ] & 36
|
||||
24 & 24 & 24 & 0 & 51 & Yes & & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{M}_{12}$, 1), ($A_{2}(7)$, 1), ($B_{2}(5)$, 3), ($A_{4}(2)$, 1)] & [ 3, 4, 7, 13, 15, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
|
||||
24 & 24 & 24 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 3& []& [($\textrm{M}_{22}$, 1), (${}^2A_{3}(9)$, 3)] & [ 3, 4, 5, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
|
||||
24 & 24 & 26 & 0 & 51 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 36
|
||||
24 & 24 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 2& [L_2(13)]& [($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28 ] & 36
|
||||
24 & 26 & 26 & 0 & 51 & Yes & & ? & No & 1& []& [] & [ 3, 26, 28 ] & 36
|
||||
24 & 26 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 27 ] & 36
|
||||
24 & 26 & 26 & 3 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & ? & No & 1& []& [($A_{2}(3)$, 2)] & [ 3, 13, 14, 16, 26 ] & 36
|
||||
24 & 26 & 26 & 5 & 51 & Yes & & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 26, 27, 28 ] & 36
|
||||
26 & 26 & 26 & 0 & 51 & Yes & & Yes & No & 1& []& [($A_{2}(3)$, 1), ($A_{2}(9)$, 3)] & [ 3, 26 ] & 36
|
||||
26 & 26 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 0& []& [($A_{2}(3)$, 2), (${}^2A_{2}(16)$, 2), ($G_{2}(3)$, 6)] & [ 13, 26 ] & 36
|
||||
26 & 26 & 26 & 5 & 51 & Yes & & Yes & No & 1& []& [($A_{2}(3)$, 2), (${}^2A_{2}(16)$, 1)] & [ 3 ] & 36
|
||||
26 & 26 & 26 & 21 & 51 & No & b^-1 * a * c^-1 * a, a^-1 * b * c^-1 * b & Yes & No & 0& [L_2(13)]& [($A_{2}(3)$, 5), (${}^2A_{2}(16)$, 3), ($G_{2}(3)$, 1), (${}^2F_4(2)'$, 1)] & [ 13, 30 ] & 36
|
|
79
data/table_3_3_4.csv
Normal file
79
data/table_3_3_4.csv
Normal file
@ -0,0 +1,79 @@
|
||||
order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
|
||||
14 & 14 & 40 & 0 & 37 & Yes & No & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{J}_{1}$, 2), (${}^2A_{3}(9)$, 1)] & [ 7 ] & 30
|
||||
14 & 14 & 40 & 4 & 37 & Yes & ? & 0& []& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{22}$, 1)] & [ 7, 28 ] & 30
|
||||
14 & 14 & 48 & 0 & 29 & ? & No & 1& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(25)$, 1)] & [ 3, 7 ] & 30
|
||||
14 & 14 & 48 & 1 & 29 & ? & No & 1& [L_2(7)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1)] & [ 3, 8 ] & 30
|
||||
14 & 14 & 48 & 4 & 29 & ? & ? & 1& []& [($\textrm{Alt}_{7}$, 1)] & [ 3, 7 ] & 30
|
||||
14 & 14 & 48 & 5 & 29 & ? & No & 1& []& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{M}_{22}$, 1)] & [ 3, 8, 21 ] & 30
|
||||
14 & 14 & 54 & 0 & 41 & ? & ? & 1& []& [(${}^2A_{2}(9)$, 1)] & [ 3 ] & 30
|
||||
14 & 14 & 54 & 4 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 16 & 40 & 0 & 37 & ? & ? & 0& [L_2(7^2)]& [] & [ ] & 30
|
||||
14 & 16 & 48 & 0 & 29 & ? & ? & 1& []& [] & [ 3, 4 ] & 30
|
||||
14 & 16 & 48 & 1 & 29 & ? & No & 1& [L_2(7)]& [] & [ 3 ] & 30
|
||||
14 & 16 & 54 & 0 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 16 & 54 & 2 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 18 & 40 & 0 & 43 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1)] & [ 21, 25 ] & 30
|
||||
14 & 18 & 48 & 0 & 35 & Yes & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3 ] & 30
|
||||
14 & 18 & 54 & 0 & 47 & ? & No & 2& []& [] & [ 3 ] & 30
|
||||
14 & 18 & 54 & 2 & 47 & ? & No & 2& []& [] & [ 3, 21, 28, 29 ] & 30
|
||||
14 & 24 & 40 & 0 & 45 & Yes & ? & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 7, 10 ] & 30
|
||||
14 & 24 & 48 & 0 & 37 & ? & No & 2& []& [] & [ 3, 4 ] & 30
|
||||
14 & 24 & 48 & 1 & 37 & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 7, 8, 15, 22, 28, 29 ] & 30
|
||||
14 & 24 & 54 & 0 & 49 & ? & ? & 2& []& [] & [ 3, 18 ] & 30
|
||||
14 & 24 & 54 & 2 & 49 & Yes & No & 2& []& [($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 14, 21, 28 ] & 30
|
||||
14 & 26 & 40 & 0 & 45 & ? & ? & 0& []& [] & [ ] & 30
|
||||
14 & 26 & 40 & 4 & 45 & ? & ? & 0& []& [] & [ ] & 30
|
||||
14 & 26 & 48 & 0 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 26 & 48 & 1 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 26 & 48 & 4 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 26 & 48 & 5 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 26 & 54 & 0 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 26 & 54 & 2 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 26 & 54 & 4 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
14 & 26 & 54 & 6 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
16 & 16 & 40 & 0 & 37 & Yes & No & 0& []& [($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 1), ($\textrm{J}_{2}$, 2), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($A_{3}(3)$, 2)] & [ 5, 21, 26, 28 ] & 30
|
||||
16 & 16 & 48 & 0 & 29 & ? & No & 1& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($\textrm{Alt}_{9}$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 21, 26, 29, 30 ] & 30
|
||||
16 & 16 & 48 & 1 & 29 & Yes & No & 1& []& [(${}^2A_{2}(9)$, 1), ($\textrm{J}_{2}$, 1), ($\textrm{Alt}_{10}$, 1), ($B_{2}(5)$, 1), (${}^2A_{2}(64)$, 2), ($A_{4}(2)$, 1), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2)] & [ 3, 4, 10 ] & 30
|
||||
16 & 16 & 54 & 0 & 41 & ? & No & 1& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 18, 22, 25, 26, 27 ] & 30
|
||||
16 & 18 & 40 & 0 & 43 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 5)] & [ 6, 18, 24, 27, 30 ] & 30
|
||||
16 & 18 & 48 & 0 & 35 & ? & No & 2& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 17, 19, 30 ] & 30
|
||||
16 & 18 & 54 & 0 & 47 & ? & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 25, 26, 27 ] & 30
|
||||
16 & 18 & 54 & 2 & 47 & ? & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 20, 21, 22, 24, 25, 26, 27, 29, 30 ] & 30
|
||||
16 & 24 & 40 & 0 & 45 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(5)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 11, 21, 22 ] & 30
|
||||
16 & 24 & 48 & 0 & 37 & ? & No & 2& []& [($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 5), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 24 & 48 & 1 & 37 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($A_{4}(2)$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 10, 12, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 24 & 54 & 0 & 49 & Yes & No & 2& []& [($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 1)] & [ 3, 4, 9, 10, 12, 18, 19, 21, 25, 27, 28, 29, 30 ] & 30
|
||||
16 & 24 & 54 & 2 & 49 & ? & No & 2& []& [($B_{2}(3)$, 1), ($\textrm{Alt}_{10}$, 3)] & [ 3, 4, 10, 12, 14, 16, 19, 20, 22, 23, 24, 26, 27, 28, 30 ] & 30
|
||||
16 & 26 & 40 & 0 & 45 & ? & ? & 0& [L_2(13^2)]& [(${}^2F_4(2)'$, 1)] & [ ] & 30
|
||||
16 & 26 & 48 & 0 & 37 & ? & No & 1& [L_2(13)]& [] & [ 3, 16, 30 ] & 30
|
||||
16 & 26 & 48 & 1 & 37 & ? & ? & 1& []& [] & [ 3, 4 ] & 30
|
||||
16 & 26 & 54 & 0 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
|
||||
16 & 26 & 54 & 2 & 49 & ? & ? & 1& []& [] & [ 3, 28 ] & 30
|
||||
18 & 18 & 40 & 0 & 49 & Yes & No & 1& []& [($\textrm{M}_{12}$, 2), ($A_{3}(3)$, 4)] & [ 3, 5, 12, 17, 18, 19, 20, 21, 22, 24, 26, 27, 29, 30 ] & 30
|
||||
18 & 18 & 48 & 0 & 41 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{2}(64)$, 2), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
|
||||
18 & 18 & 54 & 0 & 53 & ? & No & 3& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 19, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 24 & 40 & 0 & 51 & Yes & No & 1& [L_2(3^2)]& [($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), ($\textrm{Alt}_{11}$, 4)] & [ 3, 5, 6, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
|
||||
18 & 24 & 48 & 0 & 43 & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 2), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 24 & 54 & 0 & 55 & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 2), ($A_{3}(3)$, 4), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 24 & 54 & 2 & 55 & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
|
||||
18 & 26 & 40 & 0 & 51 & ? & ? & 0& []& [] & [ ] & 30
|
||||
18 & 26 & 48 & 0 & 43 & Yes & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 27 ] & 30
|
||||
18 & 26 & 54 & 0 & 55 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13, 26, 27 ] & 30
|
||||
18 & 26 & 54 & 2 & 55 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 30
|
||||
24 & 24 & 40 & 0 & 53 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 4), ($C_{3}(2)$, 1), ($B_{2}(5)$, 8), ($A_{3}(3)$, 1), ($A_{4}(2)$, 2)] & [ 3, 5, 6, 7, 12, 13, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 24 & 48 & 0 & 45 & Yes & No & 3& []& [($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 6), (${}^2A_{3}(9)$, 5), ($B_{2}(5)$, 2), ($A_{3}(3)$, 1)] & [ 3, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 24 & 48 & 1 & 45 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 3), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 3), ($A_{4}(2)$, 1), (${}^2A_{4}(4)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 24 & 54 & 0 & 57 & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 3), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 1), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 26 & 40 & 0 & 53 & ? & ? & 0& [L_2(13^2)]& [] & [ ] & 30
|
||||
24 & 26 & 48 & 0 & 45 & ? & No & 2& [L_2(13)]& [($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 26 & 48 & 1 & 45 & ? & No & 2& []& [] & [ 3, 4, 14, 28 ] & 30
|
||||
24 & 26 & 54 & 0 & 57 & Yes & No & 2& []& [($A_{3}(3)$, 1)] & [ 3, 13, 26, 27, 28 ] & 30
|
||||
24 & 26 & 54 & 2 & 57 & ? & ? & 2& []& [] & [ 3, 13, 27 ] & 30
|
||||
26 & 26 & 40 & 0 & 53 & ? & ? & 0& []& [] & [ 13 ] & 30
|
||||
26 & 26 & 40 & 4 & 53 & Yes & ? & 0& [L_2(13^2)]& [(${}^2A_{2}(16)$, 1), ($A_{3}(3)$, 1)] & [ 13, 26 ] & 30
|
||||
26 & 26 & 48 & 0 & 45 & ? & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 14, 16, 26 ] & 30
|
||||
26 & 26 & 48 & 1 & 45 & ? & No & 1& []& [] & [ 3, 26, 28 ] & 30
|
||||
26 & 26 & 48 & 4 & 45 & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 26, 27, 28, 29 ] & 30
|
||||
26 & 26 & 48 & 5 & 45 & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 27 ] & 30
|
||||
26 & 26 & 54 & 0 & 57 & ? & No & 1& []& [($G_{2}(3)$, 2)] & [ 3, 13 ] & 30
|
||||
26 & 26 & 54 & 4 & 57 & ? & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 27 ] & 30
|
|
55
data/table_3_4_4.csv
Normal file
55
data/table_3_4_4.csv
Normal file
@ -0,0 +1,55 @@
|
||||
order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
|
||||
14 & 40 & 40 & 0 & 47 & Yes & No & 0& [L_2(7^2)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 5), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 3), ($A_{2}(9)$, 1)] & [ 5, 10, 11, 20, 21, 30 ] & 30
|
||||
14 & 40 & 48 & 0 & 39 & ? & ? & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 7, 10 ] & 30
|
||||
14 & 40 & 54 & 0 & 51 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2)] & [ 21, 25 ] & 30
|
||||
14 & 40 & 54 & 2 & 51 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2)] & [ 20, 21, 22, 25, 27, 30 ] & 30
|
||||
14 & 48 & 48 & 0 & 31 & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2), (${}^2A_{3}(9)$, 1), ($G_{2}(3)$, 2)] & [ 3, 7, 8, 15, 16, 22, 23, 24, 27, 28, 29, 30 ] & 30
|
||||
14 & 48 & 48 & 1 & 31 & ? & No & 2& []& [] & [ 3, 4 ] & 30
|
||||
14 & 48 & 54 & 0 & 43 & ? & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 18 ] & 30
|
||||
14 & 48 & 54 & 2 & 43 & Yes & No & 2& []& [($C_{3}(2)$, 3), (${}^2A_{3}(9)$, 1), ($G_{2}(3)$, 1)] & [ 3, 14, 15, 21, 22, 28, 29, 30 ] & 30
|
||||
14 & 54 & 54 & 0 & 55 & ? & No & 2& []& [] & [ 3, 21, 28, 29 ] & 30
|
||||
14 & 54 & 54 & 2 & 55 & Yes & No & 2& []& [($\textrm{Alt}_{10}$, 6), (${}^2A_{3}(9)$, 2)] & [ 3, 10, 13, 14, 17, 19, 20, 21, 23, 24, 27, 28, 29, 30 ] & 30
|
||||
14 & 54 & 54 & 8 & 55 & ? & No & 2& []& [] & [ 3, 18, 21, 27, 30 ] & 30
|
||||
16 & 40 & 40 & 0 & 47 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{M}_{11}$, 4), ($B_{2}(3)$, 7), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 2), ($C_{2}(4)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 11), ($A_{3}(3)$, 2), ($\textrm{Alt}_{11}$, 6)] & [ 5, 6, 10, 11, 15, 16, 17, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 40 & 48 & 0 & 39 & ? & No & 0& [L_2(3^2)]& [($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 1), ($\textrm{J}_{2}$, 2), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 5), ($A_{3}(3)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 11, 16, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 40 & 54 & 0 & 51 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 5), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 1)] & [ 6, 12, 17, 18, 21, 23, 24, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 40 & 54 & 2 & 51 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 4), ($\textrm{M}_{12}$, 5), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 1)] & [ 6, 10, 12, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 48 & 48 & 0 & 31 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(9)$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), ($B_{2}(3)$, 5), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 2), ($C_{3}(2)$, 5), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 5), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 5), ($A_{4}(2)$, 2), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 10, 11, 12, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 48 & 48 & 1 & 31 & Yes & No & 2& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 10), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 6), ($\textrm{Alt}_{11}$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 2)] & [ 3, 4, 5, 9, 11, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 48 & 54 & 0 & 43 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 12, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 48 & 54 & 2 & 43 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 5), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 54 & 54 & 0 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), (${}^2A_{4}(4)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 20, 21, 22, 24, 25, 26, 27, 29, 30 ] & 30
|
||||
16 & 54 & 54 & 2 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 6), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 5), ($\textrm{Alt}_{11}$, 6), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
16 & 54 & 54 & 8 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 7), (${}^2A_{4}(4)$, 3), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 12, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 40 & 40 & 0 & 53 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 8), (${}^2A_{3}(9)$, 1), (${}^2A_{4}(4)$, 3)] & [ 5, 7, 10, 15, 17, 20, 21, 22, 24, 25, 26, 27, 30 ] & 30
|
||||
18 & 40 & 48 & 0 & 45 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 7), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 10), ($\textrm{Alt}_{11}$, 5)] & [ 3, 5, 6, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 40 & 54 & 0 & 57 & ? & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 4), ($A_{3}(3)$, 14), (${}^2A_{4}(4)$, 3)] & [ 3, 5, 10, 12, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 40 & 54 & 2 & 57 & Yes & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 4)] & [ 3, 5, 9, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 48 & 48 & 0 & 37 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 3), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 9), ($\textrm{Alt}_{11}$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 48 & 54 & 0 & 49 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 2), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 8), ($\textrm{Alt}_{11}$, 4), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 48 & 54 & 2 & 49 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 54 & 54 & 0 & 61 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), (${}^2A_{4}(4)$, 2), ($A_{2}(9)$, 3)] & [ 3, 9, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 54 & 54 & 2 & 61 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 10), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 9), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 15, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
18 & 54 & 54 & 8 & 61 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 8), ($A_{3}(3)$, 10), (${}^2A_{4}(4)$, 4), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 40 & 40 & 0 & 55 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 2), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 2), ($C_{2}(4)$, 2), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 2), ($B_{2}(5)$, 10), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 4), ($\textrm{Alt}_{11}$, 3)] & [ 5, 6, 7, 10, 11, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 40 & 48 & 0 & 47 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 3), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 4), ($C_{3}(2)$, 3), ($B_{2}(5)$, 12), ($A_{3}(3)$, 2), ($A_{4}(2)$, 5), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 4)] & [ 3, 5, 6, 7, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 40 & 54 & 0 & 59 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 4), ($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 4), ($\textrm{Alt}_{11}$, 12)] & [ 3, 5, 6, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 40 & 54 & 2 & 59 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 7), (${}^2A_{3}(9)$, 6), ($A_{3}(3)$, 7), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 6)] & [ 3, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 48 & 48 & 0 & 39 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 4), ($B_{2}(3)$, 3), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 2), ($\textrm{J}_{2}$, 2), ($C_{3}(2)$, 11), ($\textrm{Alt}_{10}$, 1), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 3), ($B_{2}(5)$, 7), ($A_{3}(3)$, 1), ($A_{4}(2)$, 2), (${}^2A_{4}(4)$, 13), ($\textrm{Alt}_{11}$, 1), ($\textrm{HS}_{}$, 2)] & [ 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 48 & 48 & 1 & 39 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 1), ($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 17), (${}^2A_{3}(9)$, 8), ($B_{2}(5)$, 5), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 8), ($\textrm{Alt}_{11}$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 48 & 54 & 0 & 51 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 3), ($\textrm{Alt}_{10}$, 5), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 2), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 4)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 48 & 54 & 2 & 51 & ? & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 3), ($C_{3}(2)$, 3), ($\textrm{Alt}_{10}$, 5), (${}^2A_{3}(9)$, 5), ($A_{3}(3)$, 10), (${}^2A_{4}(4)$, 12), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 54 & 54 & 0 & 63 & ? & No & 3& []& [($\textrm{Alt}_{9}$, 6), ($\textrm{Alt}_{10}$, 2), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 8), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 54 & 54 & 2 & 63 & ? & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 9), ($C_{3}(2)$, 6), ($\textrm{Alt}_{10}$, 22), (${}^2A_{3}(9)$, 8), ($A_{3}(3)$, 26), (${}^2A_{4}(4)$, 12), ($\textrm{Alt}_{11}$, 12)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
24 & 54 & 54 & 8 & 63 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 14), ($\textrm{Alt}_{10}$, 1), (${}^2A_{4}(4)$, 9), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
26 & 40 & 40 & 0 & 55 & Yes & No & 0& [L_2(13^2)]& [($A_{3}(3)$, 3)] & [ 5, 20, 21, 27, 28 ] & 30
|
||||
26 & 40 & 48 & 0 & 47 & ? & ? & 0& [L_2(13^2)]& [(${}^2F_4(2)'$, 1)] & [ ] & 30
|
||||
26 & 40 & 54 & 0 & 59 & Yes & ? & 0& []& [($A_{3}(3)$, 3)] & [ 30 ] & 30
|
||||
26 & 40 & 54 & 2 & 59 & ? & ? & 0& []& [] & [ 15 ] & 30
|
||||
26 & 48 & 48 & 0 & 39 & Yes & No & 2& []& [($G_{2}(3)$, 1)] & [ 3, 4, 14, 28 ] & 30
|
||||
26 & 48 & 48 & 1 & 39 & Yes & No & 2& [L_2(13)]& [($G_{2}(3)$, 4), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28, 29, 30 ] & 30
|
||||
26 & 48 & 54 & 0 & 51 & ? & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 13, 26, 27, 28 ] & 30
|
||||
26 & 48 & 54 & 2 & 51 & ? & No & 2& []& [($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 13, 26, 27, 28, 29 ] & 30
|
||||
26 & 54 & 54 & 0 & 63 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13, 26, 27, 30 ] & 30
|
||||
26 & 54 & 54 & 2 & 63 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($A_{3}(3)$, 20), ($A_{2}(9)$, 3)] & [ 3, 13, 16, 19, 22, 25, 26, 27, 28, 29, 30 ] & 30
|
||||
26 & 54 & 54 & 8 & 63 & Yes & ? & 2& []& [($A_{2}(3)$, 2), ($A_{3}(3)$, 6), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 30
|
|
18
data/table_4_4_4.csv
Normal file
18
data/table_4_4_4.csv
Normal file
@ -0,0 +1,18 @@
|
||||
order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
|
||||
40 & 40 & 40 & 0 & 57 & Yes & No & 0& [L_2(\infty^4), L_2(\infty^4), L_2(\infty^4), L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 1), ($B_{2}(3)$, 18), ($\textrm{M}_{12}$, 7), (${}^2A_{2}(25)$, 2), ($\textrm{J}_{1}$, 4), ($A_{2}(5)$, 2), ($\textrm{J}_{2}$, 8), ($C_{2}(4)$, 21), ($\textrm{Alt}_{10}$, 15), (${}^2A_{3}(9)$, 12), ($B_{2}(5)$, 90), ($A_{3}(3)$, 7), ($\textrm{HS}_{}$, 12)] & [ 6, 7, 10, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
40 & 40 & 48 & 0 & 49 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{11}$, 4), ($B_{2}(3)$, 8), (${}^2A_{2}(25)$, 1), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 2), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 16), ($A_{3}(3)$, 2), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 10), ($\textrm{Alt}_{11}$, 7)] & [ 5, 6, 7, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
40 & 40 & 54 & 0 & 61 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 8), (${}^2A_{3}(9)$, 15), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 7)] & [ 5, 7, 10, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
40 & 48 & 48 & 0 & 41 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 18), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 6), ($C_{2}(4)$, 4), ($C_{3}(2)$, 6), (${}^2A_{3}(9)$, 10), ($B_{2}(5)$, 20), ($A_{3}(3)$, 15), ($A_{4}(2)$, 8), (${}^2A_{4}(4)$, 15), ($\textrm{Alt}_{11}$, 9)] & [ 3, 5, 6, 7, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
40 & 48 & 54 & 0 & 53 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 11), ($\textrm{M}_{12}$, 7), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 7), (${}^2A_{3}(9)$, 14), ($A_{3}(3)$, 16), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 7)] & [ 3, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
40 & 48 & 54 & 2 & 53 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 17), ($\textrm{M}_{12}$, 7), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 20), ($A_{3}(3)$, 22), (${}^2A_{4}(4)$, 24), ($\textrm{Alt}_{11}$, 15)] & [ 3, 5, 6, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
40 & 54 & 54 & 0 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 8), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 9), ($A_{3}(3)$, 17), (${}^2A_{4}(4)$, 7)] & [ 3, 5, 9, 10, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
40 & 54 & 54 & 2 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 12), ($\textrm{M}_{12}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 16), (${}^2A_{3}(9)$, 14), ($A_{3}(3)$, 26), (${}^2A_{4}(4)$, 40), ($\textrm{Alt}_{11}$, 10)] & [ 3, 5, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
40 & 54 & 54 & 8 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 8), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 12), (${}^2A_{3}(9)$, 12), ($A_{3}(3)$, 8), (${}^2A_{4}(4)$, 16)] & [ 3, 5, 9, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
48 & 48 & 48 & 0 & 33 & ? & No & 3& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($B_{2}(3)$, 27), ($\textrm{Alt}_{9}$, 3), ($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 39), (${}^2A_{3}(9)$, 21), ($B_{2}(5)$, 9), ($A_{3}(3)$, 33), (${}^2A_{4}(4)$, 60), ($\textrm{Alt}_{11}$, 3), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 3)] & [ 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
48 & 48 & 48 & 1 & 33 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), (${}^2A_{2}(9)$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 6), ($B_{2}(3)$, 24), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 3), ($\textrm{J}_{2}$, 4), ($C_{3}(2)$, 27), ($\textrm{Alt}_{10}$, 3), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 15), ($B_{2}(5)$, 19), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 30), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 63), ($\textrm{Alt}_{11}$, 3), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 3)] & [ 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
48 & 48 & 54 & 0 & 45 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 19), ($\textrm{Alt}_{9}$, 3), ($C_{3}(2)$, 3), ($\textrm{Alt}_{10}$, 6), (${}^2A_{3}(9)$, 17), ($A_{3}(3)$, 28), (${}^2A_{4}(4)$, 40), ($\textrm{Alt}_{11}$, 6), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
48 & 54 & 54 & 0 & 57 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 6), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 9), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 11), (${}^2A_{4}(4)$, 25), ($\textrm{Alt}_{11}$, 4), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
48 & 54 & 54 & 2 & 57 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 10), ($\textrm{Alt}_{9}$, 9), ($C_{3}(2)$, 6), ($\textrm{Alt}_{10}$, 22), (${}^2A_{3}(9)$, 14), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 36), (${}^2A_{4}(4)$, 28), ($\textrm{Alt}_{11}$, 20), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
48 & 54 & 54 & 8 & 57 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 18), ($\textrm{Alt}_{9}$, 14), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 15), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 19), (${}^2A_{4}(4)$, 52), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
54 & 54 & 54 & 0 & 69 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 6), (${}^2A_{4}(4)$, 10), ($A_{2}(9)$, 3)] & [ 3, 9, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
||||
54 & 54 & 54 & 2 & 69 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 24), (${}^2A_{3}(9)$, 9), ($A_{3}(3)$, 13), (${}^2A_{4}(4)$, 41), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
|
|
Loading…
Reference in New Issue
Block a user