1
0
mirror of https://github.com/kalmarek/SmallHyperbolic synced 2024-11-23 23:40:28 +01:00

Merge pull request #5 from kalmarek/mk/json

Mk/json
This commit is contained in:
Marek Kaluba 2022-02-12 14:50:10 +01:00 committed by GitHub
commit 5736e9e8e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
75 changed files with 16951 additions and 12 deletions

185
data/Manifest.toml Normal file
View File

@ -0,0 +1,185 @@
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.1"
manifest_format = "2.0"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "44c37b4636bc54afac5c574d2d02b625349d6582"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.41.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "3daef5523dd2e769dad2365274f760ff5f282c7d"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.11"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.2"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[deps.OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[deps.Parsers]]
deps = ["Dates"]
git-tree-sha1 = "92f91ba9e5941fc781fecf5494ac1da87bdac775"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.2.0"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"

3
data/Project.toml Normal file
View File

@ -0,0 +1,3 @@
[deps]
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"

45
data/create_json.jl Normal file
View File

@ -0,0 +1,45 @@
using Pkg
Pkg.activate(@__DIR__)
using DelimitedFiles
using JSON
include(joinpath(@__DIR__, "parse_presentations.jl"))
include(joinpath(@__DIR__, "smallhyperbolicgrp.jl"))
all_grps_presentations =
let tables = [
joinpath(@__DIR__, f) for f in readdir(@__DIR__) if
isfile(joinpath(@__DIR__, f)) && endswith(f, ".txt")
]
mapreduce(parse_grouppresentations_abstract, union, tables) |> Dict
end
tr_grps =
let csvs = [
joinpath(@__DIR__, f) for f in readdir(@__DIR__) if
isfile(joinpath(@__DIR__, f)) && endswith(f, ".csv")
]
trGrps = mapreduce(union, csvs) do file
m = match(r".*_(\d)_(\d)_(\d).csv", basename(file))
@assert !isnothing(m)
type = parse.(Int, tuple(m[1], m[2], m[3]))
data = readdlm(file, '&')
labels = Symbol.(replace.(strip.(data[1, :]), ' ' => '_', '-' => '_'))
groups = data[2:end, :]
grps = map(enumerate(eachrow(groups))) do (i, props)
nt = (; (Symbol(l) => v for (l, v) in zip(labels, props))...)
@debug i, grp_name(nt)
P = all_grps_presentations[grp_name(nt)]
grp = TriangleGrp(type, P.generators, P.relations, nt)
end
end
end
open(joinpath(@__DIR__, "triangle_groups.json"), "w") do io
f(args...) = show_json(args...; indent = 4)
s = sprint(f, TriangleGrpSerialization(), tr_grps)
# JSON.print(io, , 4)
print(io, s)
end

View File

@ -0,0 +1,75 @@
include("../src/groupparse.jl")
function parse_grouppresentations_abstract(filename::AbstractString)
lines = strip.(readlines(filename))
groups = let t = (; generators = String[], relations = String[])
Dict{String,typeof(t)}()
end
group_regex = r"(?<name>\w.*)\s?:=\s?(?<group_str>Group.*)"
for line in lines
isempty(line) && continue
newline = if iscomment(line)
line[3:end]
else
line[1:end]
end
m = match(group_regex, newline)
if isnothing(m)
@debug "Can't parse line as group presentation \n $line"
continue
else
name = strip(m[:name])
group_str = m[:group_str]
gens, rels = split_magma_presentation(group_str)
groups[name] = (generators = String.(gens), relations = String.(rels))
end
end
return groups
end
# parse_grouppresentations_abstract("./data/presentations_2_4_4.txt")
function _tf_missing(x::AbstractString)
s = strip(x)
yes = !isnothing(match(r"yes"i, s))
no = !isnothing(match(r"no"i, s))
mis = !isnothing(match(r"(\?)+", s))
@debug "string for true/false/missing : $s" parsed=(yes, no, mis)
yes && !no && !mis && return true
!yes && no && !mis && return false
!yes && !no && mis && return missing
throw(ArgumentError("Unrecognized string as true/false/missing: $x"))
end
function parse_vec(s::AbstractString)
m = match(r"^\s*\[(.*)\]\s*$", s)
isnothing(m) && throw("String does not seem to represent a vector: $s")
content = m[1]
return strip.(split(content, ','))
end
parse_vec(T::Type{<:AbstractString}, s::AbstractString) = T.(parse_vec(s))
function parse_vec(::Type{T}, s::AbstractString) where {T<:Number}
v = parse_vec(String, s)
isempty(v) && return T[]
length(v) == 1 && isempty(first(v)) && return T[]
return parse.(T, parse_vec(String, s))
end
function parse_vec(
::Type{T},
s::AbstractString,
) where {A<:AbstractString,B<:Number,T<:Tuple{A,B}}
v = parse_vec(s)
if length(v) == 1
@assert isempty(first(v))
return Tuple{A,B}[]
end
@assert iseven(length(v))
return map(1:2:length(v)) do i
@assert first(v[i]) == '(' && last(v[i+1]) == ')'
key = v[i][begin+1:end]
val = v[i+1][begin:end-1]
(A(key), parse(B, val))
end
end

150
data/smallhyperbolicgrp.jl Normal file
View File

@ -0,0 +1,150 @@
struct TriangleGrp
half_girth_type::NTuple{3,Int}
generators::Vector{String}
relations::Vector{String}
order1::Int
order2::Int
order3::Int
index::Int
presentation_length::Int
hyperbolic::Union{Missing,Bool}
witnesses_non_hyperbolictity::Union{Missing,Vector{String}}
virtually_torsion_free::Union{Missing,Bool}
Kazdhdan_property_T::Union{Missing,Bool}
abelianization_dimension::Int
L2_quotients::Vector{String}
quotients::Vector{Pair{String,Int}}
alternating_quotients::Vector{Int}
maximal_degree_alternating_quotients::Int
end
_name(G) = "G_$(G.order1)_$(G.order2)_$(G.order3)_$(G.index)"
name(G::TriangleGrp) = _name(G)
grp_name(nt::NamedTuple) = _name(nt)
latex_name(G::TriangleGrp) = "G^{$(G.order1),$(G.order2),$(G.order3)}_$(G.index)"
function _ishyperbolic(half_girth_type, nt::NamedTuple)
a, b, c = half_girth_type
if 1 // a + 1 // b + 1 // c < 1
return true, missing
elseif hasproperty(nt, :hyperbolic)
hyperbolic = _tf_missing(nt.hyperbolic)
nh_witnesses = let w = strip(nt.witnesses_for_non_hyperbolicity)
isempty(w) ? missing : parse_vec(String, '[' * w * ']')
end
@debug "$(nt.hyperbolic) was parsed as $hyperbolic" nh_witnesses
if hyperbolic isa Bool && hyperbolic
@assert ismissing(nh_witnesses)
end
if !ismissing(nh_witnesses)
@assert !hyperbolic
end
return hyperbolic, nh_witnesses
else
return missing, missing
end
end
function _sanitize_group_name(s::AbstractString)
s = replace(s, '$'=>"")
s = replace(s, "\\infty"=>"inf")
s = replace(s, r"\\textrm{(.*?)}"=>s"\1")
s = replace(s, r"(Alt)_{(\d+)}"=>s"\1(\2)")
s = replace(s, "_{}"=>"")
return s
end
function _delatexify(dict)
map(dict) do (key, val)
key = _sanitize_group_name(key)
key = replace(key, r"_{(\d+)}"=>s"\1")
key = replace(key, "{}^"=>"")
key => val
end |> Dict
end
function TriangleGrp(half_girth_type::NTuple{3,Int}, generators, relations, nt::NamedTuple)
# @assert fieldnames(SmallHyperbolicGrp) == propertynames(nt)
hyperbolic, witness = _ishyperbolic(half_girth_type, nt)
l2_quotients = let v = _sanitize_group_name.(parse_vec(String, nt.L2_quotients))
if isempty(v) || (length(v)==1 && isempty(first(v)))
Vector{String}()
else
String.(v)
end
end
TriangleGrp(
half_girth_type,
convert(Vector{String}, generators),
convert(Vector{String}, relations),
convert(Int, nt.order1),
convert(Int, nt.order2),
convert(Int, nt.order3),
convert(Int, nt.index),
convert(Int, nt.presentation_length),
hyperbolic,
witness,
_tf_missing(nt.virtually_torsion_free),
_tf_missing(nt.Kazhdan),
convert(Int, nt.abelianization_dimension),
l2_quotients,
[Pair(_sanitize_group_name(p[1]), p[2]) for p in parse_vec(Tuple{String,Int}, nt.quotients)],
parse_vec(Int, nt.alternating_quotients),
convert(Int, nt.maximal_order_for_alternating_quotients),
)
end
import DataStructures
import JSON.Serializations: CommonSerialization, StandardSerialization
import JSON.Writer: StructuralContext, show_json
struct TriangleGrpSerialization <: CommonSerialization end
function subscriptify(n::Integer)
n, sgn = abs(n), sign(n)
# Char(0x2080) == '₀'
s = join(Char(0x2080+d) for d in reverse(digits(n)))
return sgn >= 0 ? s : ""*s
end
function superscriptify(n::Integer)
n, sgn = abs(n), sign(n);
# (Char(0x2070), '¹', '²', '³', [Char(0x2070+i) for i in 4:9]...)
dgts = ('⁰', '¹', '²', '³', '⁴', '⁵', '⁶', '⁷', '⁸', '⁹')
s = join(dgts[d+1] for d in reverse(digits(n)))
return sgn >= 0 ? s : ""*s
end
function _to_utf8(s::AbstractString)
s = _sanitize_group_name(s)
while (m = match(r"(_{(-?\d+)}|_(\d))", s)) !== nothing
n = parse(Int, something(m[2], m[3]))
s = replace(s, m[1]=>subscriptify(n))
end
while (m = match(r"(\^{(-?\d+)}|\^(\d))", s)) !== nothing
n = parse(Int, something(m[2], m[3]))
s = replace(s, m[1]=>superscriptify(n))
end
if (m = match(r"G(\^{(\d+),(\d+),(\d+)})", s)) !== nothing
i,j,k = superscriptify.(parse.(Int, (m[2], m[3], m[4])))
s = replace(s, m[1] => "$(i)'$(j)'$(k)")
end
s = replace(s, "{}"=>"")
return s
end
function show_json(io::StructuralContext, ::TriangleGrpSerialization, G::TriangleGrp)
D = DataStructures.OrderedDict{Symbol,Any}(:name => latex_name(G))
D[:name_utf8] = _to_utf8(D[:name])
for fname in fieldnames(TriangleGrp)
D[fname] = getfield(G, fname)
end
D[:L2_quotients_utf8] = _to_utf8.(D[:L2_quotients])
D[:quotients_utf8] = Dict(_to_utf8(k) => v for (k,v) in D[:quotients])
D[:quotients_plain] = _delatexify(D[:quotients])
D[:quotients] = Dict(D[:quotients])
return show_json(io, StandardSerialization(), D)
end

22
data/table_2_4_4.csv Normal file
View File

@ -0,0 +1,22 @@
order1 & order2 & order3 & index & presentation length & hyperbolic & witnesses for non-hyperbolicity & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
6 & 40 & 40 & 0 & 45 & No & a^-1 * c * b * c * a^-1 * c * b * c^-1, b * c * a^-1 * c * b * c * a^-1 * c^-1 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 1)] & [ 5, 7 ] & 28
6 & 40 & 48 & 0 & 37 & No & b * c * a * c^-1 * b * c^-1 * a^-1 * c^-1, a^-1 * c * b * c * a * c * b * c^-1 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 3), ($A_{3}(3)$, 1)] & [ 3, 5, 6 ] & 28
6 & 40 & 54 & 0 & 49 & No & a * c^-1 * b^-1 * c^-1 * a * c * b * c, b^-1 * c * a^-1 * c^-1 * b * c^-1 * a * c & Yes & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{4}(4)$, 1)] & [ 3, 5, 10, 15, 20, 25 ] & 28
6 & 40 & 54 & 2 & 49 & No & b * c * a * c^-1 * b * c * a^-1 * c, a * c^-1 * b^-1 * c * a^-1 * c * b^-1 * c & Yes & No & 1& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1)] & [ 3, 5, 9 ] & 28
6 & 48 & 48 & 0 & 29 & No & a^-1 * c^-1 * b * c, b * c * a * c & Yes & No & 3& []& [($B_{2}(3)$, 1), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1)] & [ 3, 4 ] & 28
6 & 48 & 54 & 0 & 41 & No & b * c * a * c^-1 * b * c * a * c^-1, a^-1 * c * b * c * a^-1 * c^-1 * b^-1 * c^-1 & Yes & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 10, 11, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] & 28
6 & 48 & 54 & 2 & 41 & No & b * c * a * c^-1 * b * c * a^-1 * c, a * c^-1 * b^-1 * c^-1 * a^-1 * c^-1 * b^-1 * c & Yes & No & 3& []& [(${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1)] & [ 3, 4 ] & 28
6 & 54 & 54 & 0 & 53 & No & a * c^-1 * b^-1 * c^-1 * a * c * b * c, b^-1 * c^-1 * a^-1 * c * b * c^-1 * a * c & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{4}(4)$, 2)] & [ 3, 9, 27 ] & 28
6 & 54 & 54 & 2 & 53 & No & a^-1 * c * b^-1 * c * a * c^-1 * b * c, b^-1 * c * a^-1 * c * b * c^-1 * a * c & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1)] & [ 3, 9, 12, 15, 18, 21, 24, 27 ] & 28
6 & 54 & 54 & 8 & 53 & No & a^-1 * c^-1 * b * c, b^-1 * c^-1 * a * c & Yes & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 4)] & [ 3, 9, 12, 18, 21, 24, 27 ] & 28
8 & 40 & 40 & 0 & 45 & No & a^-1 * c^-1 * b * c, b * c^-1 * a^-1 * c & Yes & No & 0& [L_2(\infty^4)]& [($B_{2}(3)$, 1), ($C_{2}(4)$, 2), ($\textrm{Alt}_{10}$, 2), ($B_{2}(5)$, 5), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 10, 11, 15, 20, 21, 25, 26 ] & 28
8 & 40 & 48 & 0 & 37 & Yes & & ? & No & 0& [L_2(3^2)]& [($B_{2}(5)$, 4)] & [ 5, 6 ] & 28
8 & 40 & 54 & 0 & 49 & Yes & & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 4)] & [ 6 ] & 28
8 & 40 & 54 & 2 & 49 & No & b * c * a * c^-1 * b * c^-1 * a * c, a^-1 * c * b^-1 * c * a^-1 * c * b^-1 * c & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 4), ($\textrm{Alt}_{10}$, 3), ($A_{3}(3)$, 2), (${}^2A_{4}(4)$, 1)] & [ 6, 10, 12, 15, 16, 21, 22, 27, 28 ] & 28
8 & 48 & 48 & 0 & 29 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 3), ($C_{3}(2)$, 4), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 5, 11, 19, 25, 28 ] & 28
8 & 48 & 48 & 1 & 29 & No & b^-1 * c^-1 * a^-1 * c * b * c * a * c^-1, a * c^-1 * b * c * a^-1 * c * b^-1 * c^-1 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($B_{2}(3)$, 2), ($C_{3}(2)$, 1), ($B_{2}(5)$, 3), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 7, 11, 15, 19, 22, 23, 24, 25, 26, 27, 28 ] & 28
8 & 48 & 54 & 0 & 41 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 1)] & [ 3, 4, 9 ] & 28
8 & 48 & 54 & 2 & 41 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 2), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 2), (${}^2A_{4}(4)$, 1)] & [ 3, 4, 10, 13, 20, 26, 28 ] & 28
8 & 54 & 54 & 0 & 53 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 28
8 & 54 & 54 & 2 & 53 & No & a^-1 * c^-1 * b^-1 * c, b * c * a * c & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 4)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] & 28
8 & 54 & 54 & 8 & 53 & No & a * c * b^-1 * c^-1 * a^-1 * c * b * c^-1, b^-1 * c * a * c^-1 * b * c * a^-1 * c^-1 & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2)] & [ 3, 4, 9, 18, 27, 28 ] & 28
1 order1 & order2 & order3 & index & presentation length & hyperbolic & witnesses for non-hyperbolicity & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
2 6 & 40 & 40 & 0 & 45 & No & a^-1 * c * b * c * a^-1 * c * b * c^-1, b * c * a^-1 * c * b * c * a^-1 * c^-1 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 1)] & [ 5, 7 ] & 28
3 6 & 40 & 48 & 0 & 37 & No & b * c * a * c^-1 * b * c^-1 * a^-1 * c^-1, a^-1 * c * b * c * a * c * b * c^-1 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 3), ($A_{3}(3)$, 1)] & [ 3, 5, 6 ] & 28
4 6 & 40 & 54 & 0 & 49 & No & a * c^-1 * b^-1 * c^-1 * a * c * b * c, b^-1 * c * a^-1 * c^-1 * b * c^-1 * a * c & Yes & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{4}(4)$, 1)] & [ 3, 5, 10, 15, 20, 25 ] & 28
5 6 & 40 & 54 & 2 & 49 & No & b * c * a * c^-1 * b * c * a^-1 * c, a * c^-1 * b^-1 * c * a^-1 * c * b^-1 * c & Yes & No & 1& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1)] & [ 3, 5, 9 ] & 28
6 6 & 48 & 48 & 0 & 29 & No & a^-1 * c^-1 * b * c, b * c * a * c & Yes & No & 3& []& [($B_{2}(3)$, 1), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1)] & [ 3, 4 ] & 28
7 6 & 48 & 54 & 0 & 41 & No & b * c * a * c^-1 * b * c * a * c^-1, a^-1 * c * b * c * a^-1 * c^-1 * b^-1 * c^-1 & Yes & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 10, 11, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] & 28
8 6 & 48 & 54 & 2 & 41 & No & b * c * a * c^-1 * b * c * a^-1 * c, a * c^-1 * b^-1 * c^-1 * a^-1 * c^-1 * b^-1 * c & Yes & No & 3& []& [(${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1)] & [ 3, 4 ] & 28
9 6 & 54 & 54 & 0 & 53 & No & a * c^-1 * b^-1 * c^-1 * a * c * b * c, b^-1 * c^-1 * a^-1 * c * b * c^-1 * a * c & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{4}(4)$, 2)] & [ 3, 9, 27 ] & 28
10 6 & 54 & 54 & 2 & 53 & No & a^-1 * c * b^-1 * c * a * c^-1 * b * c, b^-1 * c * a^-1 * c * b * c^-1 * a * c & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1)] & [ 3, 9, 12, 15, 18, 21, 24, 27 ] & 28
11 6 & 54 & 54 & 8 & 53 & No & a^-1 * c^-1 * b * c, b^-1 * c^-1 * a * c & Yes & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 4)] & [ 3, 9, 12, 18, 21, 24, 27 ] & 28
12 8 & 40 & 40 & 0 & 45 & No & a^-1 * c^-1 * b * c, b * c^-1 * a^-1 * c & Yes & No & 0& [L_2(\infty^4)]& [($B_{2}(3)$, 1), ($C_{2}(4)$, 2), ($\textrm{Alt}_{10}$, 2), ($B_{2}(5)$, 5), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 10, 11, 15, 20, 21, 25, 26 ] & 28
13 8 & 40 & 48 & 0 & 37 & Yes & & ? & No & 0& [L_2(3^2)]& [($B_{2}(5)$, 4)] & [ 5, 6 ] & 28
14 8 & 40 & 54 & 0 & 49 & Yes & & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 4)] & [ 6 ] & 28
15 8 & 40 & 54 & 2 & 49 & No & b * c * a * c^-1 * b * c^-1 * a * c, a^-1 * c * b^-1 * c * a^-1 * c * b^-1 * c & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 4), ($\textrm{Alt}_{10}$, 3), ($A_{3}(3)$, 2), (${}^2A_{4}(4)$, 1)] & [ 6, 10, 12, 15, 16, 21, 22, 27, 28 ] & 28
16 8 & 48 & 48 & 0 & 29 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 3), ($C_{3}(2)$, 4), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 5, 11, 19, 25, 28 ] & 28
17 8 & 48 & 48 & 1 & 29 & No & b^-1 * c^-1 * a^-1 * c * b * c * a * c^-1, a * c^-1 * b * c * a^-1 * c * b^-1 * c^-1 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($B_{2}(3)$, 2), ($C_{3}(2)$, 1), ($B_{2}(5)$, 3), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 7, 11, 15, 19, 22, 23, 24, 25, 26, 27, 28 ] & 28
18 8 & 48 & 54 & 0 & 41 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 1)] & [ 3, 4, 9 ] & 28
19 8 & 48 & 54 & 2 & 41 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 2), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 2), (${}^2A_{4}(4)$, 1)] & [ 3, 4, 10, 13, 20, 26, 28 ] & 28
20 8 & 54 & 54 & 0 & 53 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 28
21 8 & 54 & 54 & 2 & 53 & No & a^-1 * c^-1 * b^-1 * c, b * c * a * c & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 4)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] & 28
22 8 & 54 & 54 & 8 & 53 & No & a * c * b^-1 * c^-1 * a^-1 * c * b * c^-1, b^-1 * c * a * c^-1 * b * c * a^-1 * c^-1 & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2)] & [ 3, 4, 9, 18, 27, 28 ] & 28

83
data/table_3_3_3.csv Normal file
View File

@ -0,0 +1,83 @@
order1 & order2 & order3 & index & presentation length & hyperbolic & witnesses for non-hyperbolicity & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
14 & 14 & 14 & 0 & 27 & ? & & Yes & Yes & 0& [L_2(7)]& [(${}^2A_{2}(9)$, 1), (${}^2A_{2}(25)$, 1)] & [ ] & 36
14 & 14 & 14 & 1 & 27 & No & c^-1 * a * b^-1 * a * c * a * b^-1 * a, a^-1 * b * c * a * b^-1 * a * c^-1 * b & ? & Yes & 1& []& [] & [ 3 ] & 36
14 & 14 & 14 & 2 & 27 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & Yes & 0& []& [($\textrm{Alt}_{7}$, 1)] & [ 7 ] & 36
14 & 14 & 14 & 6 & 27 & No & c * a * b * a, b^-1 * a^-1 * c * a & Yes & Yes & 1& []& [($A_{2}(8)$, 2)] & [ 3 ] & 36
14 & 14 & 16 & 0 & 27 & No & c * a * b * a, a^-1 * b^-1 * c^-1 * b & Yes & No & 1& [L_2(7)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1)] & [ 3, 8 ] & 36
14 & 14 & 16 & 1 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1, b^-1 * a * c * a^-1 * b^-1 * a * c * a^-1 & ? & ? & 0& [L_2(7)]& [] & [ ] & 36
14 & 14 & 16 & 4 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a, a^-1 * b * c^-1 * a * b * a * c * b^-1 & ? & ? & 0& []& [] & [ ] & 36
14 & 14 & 16 & 5 & 27 & No & c * a * b * a * c^-1 * b * a * c^-1 * b * a^-1, b * a^-1 * c^-1 * a * b^-1 * c^-1 * a * b * c * a^-1 & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 14 & 18 & 0 & 33 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & ? & 1& []& [(${}^2A_{2}(9)$, 1)] & [ 3 ] & 36
14 & 14 & 18 & 4 & 33 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 14 & 24 & 0 & 35 & Yes & & ? & ? & 1& [L_2(7)]& [] & [ 3 ] & 36
14 & 14 & 24 & 1 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & No & 1& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(25)$, 1)] & [ 3, 7 ] & 36
14 & 14 & 24 & 4 & 35 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 1& []& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{M}_{22}$, 1)] & [ 3, 8 ] & 36
14 & 14 & 24 & 5 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & Yes & ? & 1& []& [($\textrm{Alt}_{7}$, 1)] & [ 3, 7 ] & 36
14 & 14 & 26 & 0 & 35 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 14 & 26 & 1 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & ? & 0& []& [($A_{2}(9)$, 1)] & [ 14 ] & 36
14 & 14 & 26 & 3 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ ] & 36
14 & 14 & 26 & 4 & 35 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 0& []& [] & [ ] & 36
14 & 14 & 26 & 5 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 14 & 26 & 7 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 16 & 16 & 0 & 27 & No & b^-1 * a * c * b * a^-1 * c^-1, b^-1 * c * a * b^-1 * c^-1 * a & ? & No & 0& [L_2(7)]& [] & [ ] & 36
14 & 16 & 16 & 1 & 27 & No & a^-1 * b * c * a^-1 * b * a * c^-1 * a^-1 * b^-1 * a * c^-1 * b^-1, c * a^-1 * b * a * c * a^-1 * b^-1 * a * c^-1 * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3, 4 ] & 36
14 & 16 & 18 & 0 & 33 & No & a * c * b^-1 * a^-1 * c * b, c^-1 * a^-1 * b^-1 * c^-1 * a * b & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 16 & 24 & 0 & 35 & Yes & & ? & No & 1& [L_2(7)]& [] & [ 3 ] & 36
14 & 16 & 24 & 1 & 35 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
14 & 16 & 26 & 0 & 35 & Yes & & ? & ? & 0& []& [] & [ ] & 36
14 & 16 & 26 & 1 & 35 & Yes & & ? & No & 1& []& [] & [ 3 ] & 36
14 & 16 & 26 & 3 & 35 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 16 & 26 & 7 & 35 & Yes & & ? & ? & 0& []& [] & [ ] & 36
14 & 18 & 18 & 0 & 39 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & No & 2& []& [] & [ 3 ] & 36
14 & 18 & 24 & 0 & 41 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 2& []& [] & [ 3 ] & 36
14 & 18 & 26 & 0 & 41 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 18 & 26 & 3 & 41 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 24 & 24 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 7, 8, 22, 28, 29, 31, 35, 36 ] & 36
14 & 24 & 24 & 1 & 43 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 36
14 & 24 & 26 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 24 & 26 & 1 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 24 & 26 & 3 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 24 & 26 & 7 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 26 & 26 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 0& []& [] & [ ] & 36
14 & 26 & 26 & 1 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 26 & 26 & 3 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 26 & 26 & 4 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
14 & 26 & 26 & 5 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ 14 ] & 36
14 & 26 & 26 & 15 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ 13 ] & 36
16 & 16 & 16 & 0 & 27 & No & c * a * b * a, a^-1 * b^-1 * c^-1 * b & Yes & No & 1& []& [(${}^2A_{2}(9)$, 1), ($\textrm{J}_{2}$, 1), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2)] & [ 3, 4 ] & 36
16 & 16 & 16 & 1 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1, b * a * c^-1 * a^-1 * b^-1 * a * c * a^-1 & Yes & No & 0& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), (${}^2A_{2}(81)$, 2)] & [ 5, 29 ] & 36
16 & 16 & 18 & 0 & 33 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & Yes & No & 1& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4 ] & 36
16 & 16 & 24 & 0 & 35 & Yes & & Yes & No & 1& []& [($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 3, 4, 10, 34, 36 ] & 36
16 & 16 & 24 & 1 & 35 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & Yes & No & 1& []& [($\textrm{Alt}_{9}$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 21, 29, 33, 34 ] & 36
16 & 16 & 26 & 0 & 35 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
16 & 16 & 26 & 1 & 35 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & ? & No & 0& [L_2(13)]& [] & [ 16, 30 ] & 36
16 & 18 & 18 & 0 & 39 & No & b^-1 * a^-1 * c^-1 * a^-1 * b * a * c^-1 * a, c^-1 * a * b * a * c^-1 * a * b * a & Yes & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4 ] & 36
16 & 18 & 24 & 0 & 41 & Yes & & Yes & No & 2& []& [($\textrm{Alt}_{10}$, 1)] & [ 3, 4, 10, 19, 34 ] & 36
16 & 18 & 26 & 0 & 41 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
16 & 24 & 24 & 0 & 43 & Yes & & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 15, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
16 & 24 & 24 & 1 & 43 & Yes & & Yes & No & 2& []& [($C_{3}(2)$, 2)] & [ 3, 4, 5, 17, 18, 19, 21, 22, 27, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
16 & 24 & 26 & 0 & 43 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
16 & 24 & 26 & 1 & 43 & Yes & & ? & ? & 1& [L_2(13)]& [] & [ 3 ] & 36
16 & 26 & 26 & 0 & 43 & Yes & & ? & No & 1& []& [] & [ 3, 26 ] & 36
16 & 26 & 26 & 1 & 43 & Yes & & ? & ? & 0& [L_2(13)]& [($A_{2}(3)$, 1)] & [ ] & 36
16 & 26 & 26 & 3 & 43 & Yes & & Yes & No & 0& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 26 ] & 36
16 & 26 & 26 & 5 & 43 & Yes & & Yes & ? & 1& [L_2(13)]& [($A_{2}(3)$, 1), ($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 14, 26, 28, 29 ] & 36
18 & 18 & 18 & 0 & 45 & No & c * a * b * a, b * a * c * a & Yes & No & 3& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 27, 36 ] & 36
18 & 18 & 24 & 0 & 47 & No & c * a * b * a, b * a * c * a & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 12, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
18 & 18 & 26 & 0 & 47 & No & c * a * b * a, b * a * c * a & Yes & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 36
18 & 24 & 24 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
18 & 24 & 26 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 2& []& [] & [ 3, 27 ] & 36
18 & 26 & 26 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 1& []& [($G_{2}(3)$, 2)] & [ 3, 13 ] & 36
18 & 26 & 26 & 1 & 49 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 27 ] & 36
24 & 24 & 24 & 0 & 51 & Yes & & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{M}_{12}$, 1), ($A_{2}(7)$, 1), ($B_{2}(5)$, 3), ($A_{4}(2)$, 1)] & [ 3, 4, 7, 13, 15, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
24 & 24 & 24 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 3& []& [($\textrm{M}_{22}$, 1), (${}^2A_{3}(9)$, 3)] & [ 3, 4, 5, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
24 & 24 & 26 & 0 & 51 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 36
24 & 24 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 2& [L_2(13)]& [($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28 ] & 36
24 & 26 & 26 & 0 & 51 & Yes & & ? & No & 1& []& [] & [ 3, 26, 28 ] & 36
24 & 26 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 27 ] & 36
24 & 26 & 26 & 3 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & ? & No & 1& []& [($A_{2}(3)$, 2)] & [ 3, 13, 14, 16, 26 ] & 36
24 & 26 & 26 & 5 & 51 & Yes & & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 26, 27, 28 ] & 36
26 & 26 & 26 & 0 & 51 & Yes & & Yes & No & 1& []& [($A_{2}(3)$, 1), ($A_{2}(9)$, 3)] & [ 3, 26 ] & 36
26 & 26 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 0& []& [($A_{2}(3)$, 2), (${}^2A_{2}(16)$, 2), ($G_{2}(3)$, 6)] & [ 13, 26 ] & 36
26 & 26 & 26 & 5 & 51 & Yes & & Yes & No & 1& []& [($A_{2}(3)$, 2), (${}^2A_{2}(16)$, 1)] & [ 3 ] & 36
26 & 26 & 26 & 21 & 51 & No & b^-1 * a * c^-1 * a, a^-1 * b * c^-1 * b & Yes & No & 0& [L_2(13)]& [($A_{2}(3)$, 5), (${}^2A_{2}(16)$, 3), ($G_{2}(3)$, 1), (${}^2F_4(2)'$, 1)] & [ 13, 30 ] & 36
1 order1 & order2 & order3 & index & presentation length & hyperbolic & witnesses for non-hyperbolicity & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
2 14 & 14 & 14 & 0 & 27 & ? & & Yes & Yes & 0& [L_2(7)]& [(${}^2A_{2}(9)$, 1), (${}^2A_{2}(25)$, 1)] & [ ] & 36
3 14 & 14 & 14 & 1 & 27 & No & c^-1 * a * b^-1 * a * c * a * b^-1 * a, a^-1 * b * c * a * b^-1 * a * c^-1 * b & ? & Yes & 1& []& [] & [ 3 ] & 36
4 14 & 14 & 14 & 2 & 27 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & Yes & 0& []& [($\textrm{Alt}_{7}$, 1)] & [ 7 ] & 36
5 14 & 14 & 14 & 6 & 27 & No & c * a * b * a, b^-1 * a^-1 * c * a & Yes & Yes & 1& []& [($A_{2}(8)$, 2)] & [ 3 ] & 36
6 14 & 14 & 16 & 0 & 27 & No & c * a * b * a, a^-1 * b^-1 * c^-1 * b & Yes & No & 1& [L_2(7)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1)] & [ 3, 8 ] & 36
7 14 & 14 & 16 & 1 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1, b^-1 * a * c * a^-1 * b^-1 * a * c * a^-1 & ? & ? & 0& [L_2(7)]& [] & [ ] & 36
8 14 & 14 & 16 & 4 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a, a^-1 * b * c^-1 * a * b * a * c * b^-1 & ? & ? & 0& []& [] & [ ] & 36
9 14 & 14 & 16 & 5 & 27 & No & c * a * b * a * c^-1 * b * a * c^-1 * b * a^-1, b * a^-1 * c^-1 * a * b^-1 * c^-1 * a * b * c * a^-1 & ? & ? & 1& []& [] & [ 3 ] & 36
10 14 & 14 & 18 & 0 & 33 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & ? & 1& []& [(${}^2A_{2}(9)$, 1)] & [ 3 ] & 36
11 14 & 14 & 18 & 4 & 33 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
12 14 & 14 & 24 & 0 & 35 & Yes & & ? & ? & 1& [L_2(7)]& [] & [ 3 ] & 36
13 14 & 14 & 24 & 1 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & No & 1& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(25)$, 1)] & [ 3, 7 ] & 36
14 14 & 14 & 24 & 4 & 35 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 1& []& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{M}_{22}$, 1)] & [ 3, 8 ] & 36
15 14 & 14 & 24 & 5 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & Yes & ? & 1& []& [($\textrm{Alt}_{7}$, 1)] & [ 3, 7 ] & 36
16 14 & 14 & 26 & 0 & 35 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
17 14 & 14 & 26 & 1 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & ? & 0& []& [($A_{2}(9)$, 1)] & [ 14 ] & 36
18 14 & 14 & 26 & 3 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ ] & 36
19 14 & 14 & 26 & 4 & 35 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 0& []& [] & [ ] & 36
20 14 & 14 & 26 & 5 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
21 14 & 14 & 26 & 7 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
22 14 & 16 & 16 & 0 & 27 & No & b^-1 * a * c * b * a^-1 * c^-1, b^-1 * c * a * b^-1 * c^-1 * a & ? & No & 0& [L_2(7)]& [] & [ ] & 36
23 14 & 16 & 16 & 1 & 27 & No & a^-1 * b * c * a^-1 * b * a * c^-1 * a^-1 * b^-1 * a * c^-1 * b^-1, c * a^-1 * b * a * c * a^-1 * b^-1 * a * c^-1 * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3, 4 ] & 36
24 14 & 16 & 18 & 0 & 33 & No & a * c * b^-1 * a^-1 * c * b, c^-1 * a^-1 * b^-1 * c^-1 * a * b & ? & ? & 1& []& [] & [ 3 ] & 36
25 14 & 16 & 24 & 0 & 35 & Yes & & ? & No & 1& [L_2(7)]& [] & [ 3 ] & 36
26 14 & 16 & 24 & 1 & 35 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
27 14 & 16 & 26 & 0 & 35 & Yes & & ? & ? & 0& []& [] & [ ] & 36
28 14 & 16 & 26 & 1 & 35 & Yes & & ? & No & 1& []& [] & [ 3 ] & 36
29 14 & 16 & 26 & 3 & 35 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
30 14 & 16 & 26 & 7 & 35 & Yes & & ? & ? & 0& []& [] & [ ] & 36
31 14 & 18 & 18 & 0 & 39 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & No & 2& []& [] & [ 3 ] & 36
32 14 & 18 & 24 & 0 & 41 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 2& []& [] & [ 3 ] & 36
33 14 & 18 & 26 & 0 & 41 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
34 14 & 18 & 26 & 3 & 41 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 1& []& [] & [ 3 ] & 36
35 14 & 24 & 24 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 7, 8, 22, 28, 29, 31, 35, 36 ] & 36
36 14 & 24 & 24 & 1 & 43 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 36
37 14 & 24 & 26 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
38 14 & 24 & 26 & 1 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
39 14 & 24 & 26 & 3 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
40 14 & 24 & 26 & 7 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 1& []& [] & [ 3 ] & 36
41 14 & 26 & 26 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 0& []& [] & [ ] & 36
42 14 & 26 & 26 & 1 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
43 14 & 26 & 26 & 3 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
44 14 & 26 & 26 & 4 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
45 14 & 26 & 26 & 5 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ 14 ] & 36
46 14 & 26 & 26 & 15 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ 13 ] & 36
47 16 & 16 & 16 & 0 & 27 & No & c * a * b * a, a^-1 * b^-1 * c^-1 * b & Yes & No & 1& []& [(${}^2A_{2}(9)$, 1), ($\textrm{J}_{2}$, 1), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2)] & [ 3, 4 ] & 36
48 16 & 16 & 16 & 1 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1, b * a * c^-1 * a^-1 * b^-1 * a * c * a^-1 & Yes & No & 0& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), (${}^2A_{2}(81)$, 2)] & [ 5, 29 ] & 36
49 16 & 16 & 18 & 0 & 33 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & Yes & No & 1& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4 ] & 36
50 16 & 16 & 24 & 0 & 35 & Yes & & Yes & No & 1& []& [($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 3, 4, 10, 34, 36 ] & 36
51 16 & 16 & 24 & 1 & 35 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & Yes & No & 1& []& [($\textrm{Alt}_{9}$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 21, 29, 33, 34 ] & 36
52 16 & 16 & 26 & 0 & 35 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
53 16 & 16 & 26 & 1 & 35 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & ? & No & 0& [L_2(13)]& [] & [ 16, 30 ] & 36
54 16 & 18 & 18 & 0 & 39 & No & b^-1 * a^-1 * c^-1 * a^-1 * b * a * c^-1 * a, c^-1 * a * b * a * c^-1 * a * b * a & Yes & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4 ] & 36
55 16 & 18 & 24 & 0 & 41 & Yes & & Yes & No & 2& []& [($\textrm{Alt}_{10}$, 1)] & [ 3, 4, 10, 19, 34 ] & 36
56 16 & 18 & 26 & 0 & 41 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
57 16 & 24 & 24 & 0 & 43 & Yes & & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 15, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
58 16 & 24 & 24 & 1 & 43 & Yes & & Yes & No & 2& []& [($C_{3}(2)$, 2)] & [ 3, 4, 5, 17, 18, 19, 21, 22, 27, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
59 16 & 24 & 26 & 0 & 43 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
60 16 & 24 & 26 & 1 & 43 & Yes & & ? & ? & 1& [L_2(13)]& [] & [ 3 ] & 36
61 16 & 26 & 26 & 0 & 43 & Yes & & ? & No & 1& []& [] & [ 3, 26 ] & 36
62 16 & 26 & 26 & 1 & 43 & Yes & & ? & ? & 0& [L_2(13)]& [($A_{2}(3)$, 1)] & [ ] & 36
63 16 & 26 & 26 & 3 & 43 & Yes & & Yes & No & 0& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 26 ] & 36
64 16 & 26 & 26 & 5 & 43 & Yes & & Yes & ? & 1& [L_2(13)]& [($A_{2}(3)$, 1), ($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 14, 26, 28, 29 ] & 36
65 18 & 18 & 18 & 0 & 45 & No & c * a * b * a, b * a * c * a & Yes & No & 3& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 27, 36 ] & 36
66 18 & 18 & 24 & 0 & 47 & No & c * a * b * a, b * a * c * a & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 12, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
67 18 & 18 & 26 & 0 & 47 & No & c * a * b * a, b * a * c * a & Yes & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 36
68 18 & 24 & 24 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
69 18 & 24 & 26 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 2& []& [] & [ 3, 27 ] & 36
70 18 & 26 & 26 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 1& []& [($G_{2}(3)$, 2)] & [ 3, 13 ] & 36
71 18 & 26 & 26 & 1 & 49 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 27 ] & 36
72 24 & 24 & 24 & 0 & 51 & Yes & & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{M}_{12}$, 1), ($A_{2}(7)$, 1), ($B_{2}(5)$, 3), ($A_{4}(2)$, 1)] & [ 3, 4, 7, 13, 15, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
73 24 & 24 & 24 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 3& []& [($\textrm{M}_{22}$, 1), (${}^2A_{3}(9)$, 3)] & [ 3, 4, 5, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
74 24 & 24 & 26 & 0 & 51 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 36
75 24 & 24 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 2& [L_2(13)]& [($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28 ] & 36
76 24 & 26 & 26 & 0 & 51 & Yes & & ? & No & 1& []& [] & [ 3, 26, 28 ] & 36
77 24 & 26 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 27 ] & 36
78 24 & 26 & 26 & 3 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & ? & No & 1& []& [($A_{2}(3)$, 2)] & [ 3, 13, 14, 16, 26 ] & 36
79 24 & 26 & 26 & 5 & 51 & Yes & & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 26, 27, 28 ] & 36
80 26 & 26 & 26 & 0 & 51 & Yes & & Yes & No & 1& []& [($A_{2}(3)$, 1), ($A_{2}(9)$, 3)] & [ 3, 26 ] & 36
81 26 & 26 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 0& []& [($A_{2}(3)$, 2), (${}^2A_{2}(16)$, 2), ($G_{2}(3)$, 6)] & [ 13, 26 ] & 36
82 26 & 26 & 26 & 5 & 51 & Yes & & Yes & No & 1& []& [($A_{2}(3)$, 2), (${}^2A_{2}(16)$, 1)] & [ 3 ] & 36
83 26 & 26 & 26 & 21 & 51 & No & b^-1 * a * c^-1 * a, a^-1 * b * c^-1 * b & Yes & No & 0& [L_2(13)]& [($A_{2}(3)$, 5), (${}^2A_{2}(16)$, 3), ($G_{2}(3)$, 1), (${}^2F_4(2)'$, 1)] & [ 13, 30 ] & 36

79
data/table_3_3_4.csv Normal file
View File

@ -0,0 +1,79 @@
order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
14 & 14 & 40 & 0 & 37 & Yes & No & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{J}_{1}$, 2), (${}^2A_{3}(9)$, 1)] & [ 7 ] & 30
14 & 14 & 40 & 4 & 37 & Yes & ? & 0& []& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{22}$, 1)] & [ 7, 28 ] & 30
14 & 14 & 48 & 0 & 29 & ? & No & 1& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(25)$, 1)] & [ 3, 7 ] & 30
14 & 14 & 48 & 1 & 29 & ? & No & 1& [L_2(7)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1)] & [ 3, 8 ] & 30
14 & 14 & 48 & 4 & 29 & ? & ? & 1& []& [($\textrm{Alt}_{7}$, 1)] & [ 3, 7 ] & 30
14 & 14 & 48 & 5 & 29 & ? & No & 1& []& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{M}_{22}$, 1)] & [ 3, 8, 21 ] & 30
14 & 14 & 54 & 0 & 41 & ? & ? & 1& []& [(${}^2A_{2}(9)$, 1)] & [ 3 ] & 30
14 & 14 & 54 & 4 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 16 & 40 & 0 & 37 & ? & ? & 0& [L_2(7^2)]& [] & [ ] & 30
14 & 16 & 48 & 0 & 29 & ? & ? & 1& []& [] & [ 3, 4 ] & 30
14 & 16 & 48 & 1 & 29 & ? & No & 1& [L_2(7)]& [] & [ 3 ] & 30
14 & 16 & 54 & 0 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 16 & 54 & 2 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 18 & 40 & 0 & 43 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1)] & [ 21, 25 ] & 30
14 & 18 & 48 & 0 & 35 & Yes & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3 ] & 30
14 & 18 & 54 & 0 & 47 & ? & No & 2& []& [] & [ 3 ] & 30
14 & 18 & 54 & 2 & 47 & ? & No & 2& []& [] & [ 3, 21, 28, 29 ] & 30
14 & 24 & 40 & 0 & 45 & Yes & ? & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 7, 10 ] & 30
14 & 24 & 48 & 0 & 37 & ? & No & 2& []& [] & [ 3, 4 ] & 30
14 & 24 & 48 & 1 & 37 & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 7, 8, 15, 22, 28, 29 ] & 30
14 & 24 & 54 & 0 & 49 & ? & ? & 2& []& [] & [ 3, 18 ] & 30
14 & 24 & 54 & 2 & 49 & Yes & No & 2& []& [($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 14, 21, 28 ] & 30
14 & 26 & 40 & 0 & 45 & ? & ? & 0& []& [] & [ ] & 30
14 & 26 & 40 & 4 & 45 & ? & ? & 0& []& [] & [ ] & 30
14 & 26 & 48 & 0 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 26 & 48 & 1 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 26 & 48 & 4 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 26 & 48 & 5 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 26 & 54 & 0 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 26 & 54 & 2 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 26 & 54 & 4 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
14 & 26 & 54 & 6 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
16 & 16 & 40 & 0 & 37 & Yes & No & 0& []& [($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 1), ($\textrm{J}_{2}$, 2), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($A_{3}(3)$, 2)] & [ 5, 21, 26, 28 ] & 30
16 & 16 & 48 & 0 & 29 & ? & No & 1& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($\textrm{Alt}_{9}$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 21, 26, 29, 30 ] & 30
16 & 16 & 48 & 1 & 29 & Yes & No & 1& []& [(${}^2A_{2}(9)$, 1), ($\textrm{J}_{2}$, 1), ($\textrm{Alt}_{10}$, 1), ($B_{2}(5)$, 1), (${}^2A_{2}(64)$, 2), ($A_{4}(2)$, 1), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2)] & [ 3, 4, 10 ] & 30
16 & 16 & 54 & 0 & 41 & ? & No & 1& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 18, 22, 25, 26, 27 ] & 30
16 & 18 & 40 & 0 & 43 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 5)] & [ 6, 18, 24, 27, 30 ] & 30
16 & 18 & 48 & 0 & 35 & ? & No & 2& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 17, 19, 30 ] & 30
16 & 18 & 54 & 0 & 47 & ? & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 25, 26, 27 ] & 30
16 & 18 & 54 & 2 & 47 & ? & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 20, 21, 22, 24, 25, 26, 27, 29, 30 ] & 30
16 & 24 & 40 & 0 & 45 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(5)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 11, 21, 22 ] & 30
16 & 24 & 48 & 0 & 37 & ? & No & 2& []& [($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 5), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 24 & 48 & 1 & 37 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($A_{4}(2)$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 10, 12, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 24 & 54 & 0 & 49 & Yes & No & 2& []& [($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 1)] & [ 3, 4, 9, 10, 12, 18, 19, 21, 25, 27, 28, 29, 30 ] & 30
16 & 24 & 54 & 2 & 49 & ? & No & 2& []& [($B_{2}(3)$, 1), ($\textrm{Alt}_{10}$, 3)] & [ 3, 4, 10, 12, 14, 16, 19, 20, 22, 23, 24, 26, 27, 28, 30 ] & 30
16 & 26 & 40 & 0 & 45 & ? & ? & 0& [L_2(13^2)]& [(${}^2F_4(2)'$, 1)] & [ ] & 30
16 & 26 & 48 & 0 & 37 & ? & No & 1& [L_2(13)]& [] & [ 3, 16, 30 ] & 30
16 & 26 & 48 & 1 & 37 & ? & ? & 1& []& [] & [ 3, 4 ] & 30
16 & 26 & 54 & 0 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
16 & 26 & 54 & 2 & 49 & ? & ? & 1& []& [] & [ 3, 28 ] & 30
18 & 18 & 40 & 0 & 49 & Yes & No & 1& []& [($\textrm{M}_{12}$, 2), ($A_{3}(3)$, 4)] & [ 3, 5, 12, 17, 18, 19, 20, 21, 22, 24, 26, 27, 29, 30 ] & 30
18 & 18 & 48 & 0 & 41 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{2}(64)$, 2), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
18 & 18 & 54 & 0 & 53 & ? & No & 3& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 19, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 24 & 40 & 0 & 51 & Yes & No & 1& [L_2(3^2)]& [($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), ($\textrm{Alt}_{11}$, 4)] & [ 3, 5, 6, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
18 & 24 & 48 & 0 & 43 & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 2), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 24 & 54 & 0 & 55 & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 2), ($A_{3}(3)$, 4), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 24 & 54 & 2 & 55 & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
18 & 26 & 40 & 0 & 51 & ? & ? & 0& []& [] & [ ] & 30
18 & 26 & 48 & 0 & 43 & Yes & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 27 ] & 30
18 & 26 & 54 & 0 & 55 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13, 26, 27 ] & 30
18 & 26 & 54 & 2 & 55 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 30
24 & 24 & 40 & 0 & 53 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 4), ($C_{3}(2)$, 1), ($B_{2}(5)$, 8), ($A_{3}(3)$, 1), ($A_{4}(2)$, 2)] & [ 3, 5, 6, 7, 12, 13, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 24 & 48 & 0 & 45 & Yes & No & 3& []& [($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 6), (${}^2A_{3}(9)$, 5), ($B_{2}(5)$, 2), ($A_{3}(3)$, 1)] & [ 3, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 24 & 48 & 1 & 45 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 3), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 3), ($A_{4}(2)$, 1), (${}^2A_{4}(4)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 24 & 54 & 0 & 57 & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 3), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 1), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 26 & 40 & 0 & 53 & ? & ? & 0& [L_2(13^2)]& [] & [ ] & 30
24 & 26 & 48 & 0 & 45 & ? & No & 2& [L_2(13)]& [($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28, 29, 30 ] & 30
24 & 26 & 48 & 1 & 45 & ? & No & 2& []& [] & [ 3, 4, 14, 28 ] & 30
24 & 26 & 54 & 0 & 57 & Yes & No & 2& []& [($A_{3}(3)$, 1)] & [ 3, 13, 26, 27, 28 ] & 30
24 & 26 & 54 & 2 & 57 & ? & ? & 2& []& [] & [ 3, 13, 27 ] & 30
26 & 26 & 40 & 0 & 53 & ? & ? & 0& []& [] & [ 13 ] & 30
26 & 26 & 40 & 4 & 53 & Yes & ? & 0& [L_2(13^2)]& [(${}^2A_{2}(16)$, 1), ($A_{3}(3)$, 1)] & [ 13, 26 ] & 30
26 & 26 & 48 & 0 & 45 & ? & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 14, 16, 26 ] & 30
26 & 26 & 48 & 1 & 45 & ? & No & 1& []& [] & [ 3, 26, 28 ] & 30
26 & 26 & 48 & 4 & 45 & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 26, 27, 28, 29 ] & 30
26 & 26 & 48 & 5 & 45 & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 27 ] & 30
26 & 26 & 54 & 0 & 57 & ? & No & 1& []& [($G_{2}(3)$, 2)] & [ 3, 13 ] & 30
26 & 26 & 54 & 4 & 57 & ? & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 27 ] & 30
1 order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
2 14 & 14 & 40 & 0 & 37 & Yes & No & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{J}_{1}$, 2), (${}^2A_{3}(9)$, 1)] & [ 7 ] & 30
3 14 & 14 & 40 & 4 & 37 & Yes & ? & 0& []& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{22}$, 1)] & [ 7, 28 ] & 30
4 14 & 14 & 48 & 0 & 29 & ? & No & 1& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(25)$, 1)] & [ 3, 7 ] & 30
5 14 & 14 & 48 & 1 & 29 & ? & No & 1& [L_2(7)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1)] & [ 3, 8 ] & 30
6 14 & 14 & 48 & 4 & 29 & ? & ? & 1& []& [($\textrm{Alt}_{7}$, 1)] & [ 3, 7 ] & 30
7 14 & 14 & 48 & 5 & 29 & ? & No & 1& []& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{M}_{22}$, 1)] & [ 3, 8, 21 ] & 30
8 14 & 14 & 54 & 0 & 41 & ? & ? & 1& []& [(${}^2A_{2}(9)$, 1)] & [ 3 ] & 30
9 14 & 14 & 54 & 4 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
10 14 & 16 & 40 & 0 & 37 & ? & ? & 0& [L_2(7^2)]& [] & [ ] & 30
11 14 & 16 & 48 & 0 & 29 & ? & ? & 1& []& [] & [ 3, 4 ] & 30
12 14 & 16 & 48 & 1 & 29 & ? & No & 1& [L_2(7)]& [] & [ 3 ] & 30
13 14 & 16 & 54 & 0 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
14 14 & 16 & 54 & 2 & 41 & ? & ? & 1& []& [] & [ 3 ] & 30
15 14 & 18 & 40 & 0 & 43 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1)] & [ 21, 25 ] & 30
16 14 & 18 & 48 & 0 & 35 & Yes & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3 ] & 30
17 14 & 18 & 54 & 0 & 47 & ? & No & 2& []& [] & [ 3 ] & 30
18 14 & 18 & 54 & 2 & 47 & ? & No & 2& []& [] & [ 3, 21, 28, 29 ] & 30
19 14 & 24 & 40 & 0 & 45 & Yes & ? & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 7, 10 ] & 30
20 14 & 24 & 48 & 0 & 37 & ? & No & 2& []& [] & [ 3, 4 ] & 30
21 14 & 24 & 48 & 1 & 37 & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 7, 8, 15, 22, 28, 29 ] & 30
22 14 & 24 & 54 & 0 & 49 & ? & ? & 2& []& [] & [ 3, 18 ] & 30
23 14 & 24 & 54 & 2 & 49 & Yes & No & 2& []& [($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 14, 21, 28 ] & 30
24 14 & 26 & 40 & 0 & 45 & ? & ? & 0& []& [] & [ ] & 30
25 14 & 26 & 40 & 4 & 45 & ? & ? & 0& []& [] & [ ] & 30
26 14 & 26 & 48 & 0 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
27 14 & 26 & 48 & 1 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
28 14 & 26 & 48 & 4 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
29 14 & 26 & 48 & 5 & 37 & ? & ? & 1& []& [] & [ 3 ] & 30
30 14 & 26 & 54 & 0 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
31 14 & 26 & 54 & 2 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
32 14 & 26 & 54 & 4 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
33 14 & 26 & 54 & 6 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
34 16 & 16 & 40 & 0 & 37 & Yes & No & 0& []& [($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 1), ($\textrm{J}_{2}$, 2), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($A_{3}(3)$, 2)] & [ 5, 21, 26, 28 ] & 30
35 16 & 16 & 48 & 0 & 29 & ? & No & 1& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($\textrm{Alt}_{9}$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 21, 26, 29, 30 ] & 30
36 16 & 16 & 48 & 1 & 29 & Yes & No & 1& []& [(${}^2A_{2}(9)$, 1), ($\textrm{J}_{2}$, 1), ($\textrm{Alt}_{10}$, 1), ($B_{2}(5)$, 1), (${}^2A_{2}(64)$, 2), ($A_{4}(2)$, 1), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2)] & [ 3, 4, 10 ] & 30
37 16 & 16 & 54 & 0 & 41 & ? & No & 1& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 18, 22, 25, 26, 27 ] & 30
38 16 & 18 & 40 & 0 & 43 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 5)] & [ 6, 18, 24, 27, 30 ] & 30
39 16 & 18 & 48 & 0 & 35 & ? & No & 2& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 17, 19, 30 ] & 30
40 16 & 18 & 54 & 0 & 47 & ? & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 25, 26, 27 ] & 30
41 16 & 18 & 54 & 2 & 47 & ? & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 20, 21, 22, 24, 25, 26, 27, 29, 30 ] & 30
42 16 & 24 & 40 & 0 & 45 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(5)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 11, 21, 22 ] & 30
43 16 & 24 & 48 & 0 & 37 & ? & No & 2& []& [($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 5), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
44 16 & 24 & 48 & 1 & 37 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($A_{4}(2)$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 10, 12, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
45 16 & 24 & 54 & 0 & 49 & Yes & No & 2& []& [($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 1)] & [ 3, 4, 9, 10, 12, 18, 19, 21, 25, 27, 28, 29, 30 ] & 30
46 16 & 24 & 54 & 2 & 49 & ? & No & 2& []& [($B_{2}(3)$, 1), ($\textrm{Alt}_{10}$, 3)] & [ 3, 4, 10, 12, 14, 16, 19, 20, 22, 23, 24, 26, 27, 28, 30 ] & 30
47 16 & 26 & 40 & 0 & 45 & ? & ? & 0& [L_2(13^2)]& [(${}^2F_4(2)'$, 1)] & [ ] & 30
48 16 & 26 & 48 & 0 & 37 & ? & No & 1& [L_2(13)]& [] & [ 3, 16, 30 ] & 30
49 16 & 26 & 48 & 1 & 37 & ? & ? & 1& []& [] & [ 3, 4 ] & 30
50 16 & 26 & 54 & 0 & 49 & ? & ? & 1& []& [] & [ 3 ] & 30
51 16 & 26 & 54 & 2 & 49 & ? & ? & 1& []& [] & [ 3, 28 ] & 30
52 18 & 18 & 40 & 0 & 49 & Yes & No & 1& []& [($\textrm{M}_{12}$, 2), ($A_{3}(3)$, 4)] & [ 3, 5, 12, 17, 18, 19, 20, 21, 22, 24, 26, 27, 29, 30 ] & 30
53 18 & 18 & 48 & 0 & 41 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{2}(64)$, 2), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
54 18 & 18 & 54 & 0 & 53 & ? & No & 3& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 19, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
55 18 & 24 & 40 & 0 & 51 & Yes & No & 1& [L_2(3^2)]& [($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), ($\textrm{Alt}_{11}$, 4)] & [ 3, 5, 6, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
56 18 & 24 & 48 & 0 & 43 & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 2), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
57 18 & 24 & 54 & 0 & 55 & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 2), ($A_{3}(3)$, 4), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
58 18 & 24 & 54 & 2 & 55 & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30 ] & 30
59 18 & 26 & 40 & 0 & 51 & ? & ? & 0& []& [] & [ ] & 30
60 18 & 26 & 48 & 0 & 43 & Yes & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 27 ] & 30
61 18 & 26 & 54 & 0 & 55 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13, 26, 27 ] & 30
62 18 & 26 & 54 & 2 & 55 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 30
63 24 & 24 & 40 & 0 & 53 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 4), ($C_{3}(2)$, 1), ($B_{2}(5)$, 8), ($A_{3}(3)$, 1), ($A_{4}(2)$, 2)] & [ 3, 5, 6, 7, 12, 13, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
64 24 & 24 & 48 & 0 & 45 & Yes & No & 3& []& [($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 6), (${}^2A_{3}(9)$, 5), ($B_{2}(5)$, 2), ($A_{3}(3)$, 1)] & [ 3, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
65 24 & 24 & 48 & 1 & 45 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 3), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 3), ($A_{4}(2)$, 1), (${}^2A_{4}(4)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
66 24 & 24 & 54 & 0 & 57 & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 3), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 1), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
67 24 & 26 & 40 & 0 & 53 & ? & ? & 0& [L_2(13^2)]& [] & [ ] & 30
68 24 & 26 & 48 & 0 & 45 & ? & No & 2& [L_2(13)]& [($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28, 29, 30 ] & 30
69 24 & 26 & 48 & 1 & 45 & ? & No & 2& []& [] & [ 3, 4, 14, 28 ] & 30
70 24 & 26 & 54 & 0 & 57 & Yes & No & 2& []& [($A_{3}(3)$, 1)] & [ 3, 13, 26, 27, 28 ] & 30
71 24 & 26 & 54 & 2 & 57 & ? & ? & 2& []& [] & [ 3, 13, 27 ] & 30
72 26 & 26 & 40 & 0 & 53 & ? & ? & 0& []& [] & [ 13 ] & 30
73 26 & 26 & 40 & 4 & 53 & Yes & ? & 0& [L_2(13^2)]& [(${}^2A_{2}(16)$, 1), ($A_{3}(3)$, 1)] & [ 13, 26 ] & 30
74 26 & 26 & 48 & 0 & 45 & ? & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 14, 16, 26 ] & 30
75 26 & 26 & 48 & 1 & 45 & ? & No & 1& []& [] & [ 3, 26, 28 ] & 30
76 26 & 26 & 48 & 4 & 45 & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 26, 27, 28, 29 ] & 30
77 26 & 26 & 48 & 5 & 45 & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 27 ] & 30
78 26 & 26 & 54 & 0 & 57 & ? & No & 1& []& [($G_{2}(3)$, 2)] & [ 3, 13 ] & 30
79 26 & 26 & 54 & 4 & 57 & ? & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 27 ] & 30

55
data/table_3_4_4.csv Normal file
View File

@ -0,0 +1,55 @@
order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
14 & 40 & 40 & 0 & 47 & Yes & No & 0& [L_2(7^2)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 5), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 3), ($A_{2}(9)$, 1)] & [ 5, 10, 11, 20, 21, 30 ] & 30
14 & 40 & 48 & 0 & 39 & ? & ? & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 7, 10 ] & 30
14 & 40 & 54 & 0 & 51 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2)] & [ 21, 25 ] & 30
14 & 40 & 54 & 2 & 51 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2)] & [ 20, 21, 22, 25, 27, 30 ] & 30
14 & 48 & 48 & 0 & 31 & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2), (${}^2A_{3}(9)$, 1), ($G_{2}(3)$, 2)] & [ 3, 7, 8, 15, 16, 22, 23, 24, 27, 28, 29, 30 ] & 30
14 & 48 & 48 & 1 & 31 & ? & No & 2& []& [] & [ 3, 4 ] & 30
14 & 48 & 54 & 0 & 43 & ? & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 18 ] & 30
14 & 48 & 54 & 2 & 43 & Yes & No & 2& []& [($C_{3}(2)$, 3), (${}^2A_{3}(9)$, 1), ($G_{2}(3)$, 1)] & [ 3, 14, 15, 21, 22, 28, 29, 30 ] & 30
14 & 54 & 54 & 0 & 55 & ? & No & 2& []& [] & [ 3, 21, 28, 29 ] & 30
14 & 54 & 54 & 2 & 55 & Yes & No & 2& []& [($\textrm{Alt}_{10}$, 6), (${}^2A_{3}(9)$, 2)] & [ 3, 10, 13, 14, 17, 19, 20, 21, 23, 24, 27, 28, 29, 30 ] & 30
14 & 54 & 54 & 8 & 55 & ? & No & 2& []& [] & [ 3, 18, 21, 27, 30 ] & 30
16 & 40 & 40 & 0 & 47 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{M}_{11}$, 4), ($B_{2}(3)$, 7), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 2), ($C_{2}(4)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 11), ($A_{3}(3)$, 2), ($\textrm{Alt}_{11}$, 6)] & [ 5, 6, 10, 11, 15, 16, 17, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 40 & 48 & 0 & 39 & ? & No & 0& [L_2(3^2)]& [($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 1), ($\textrm{J}_{2}$, 2), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 5), ($A_{3}(3)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 11, 16, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30 ] & 30
16 & 40 & 54 & 0 & 51 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 5), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 1)] & [ 6, 12, 17, 18, 21, 23, 24, 26, 27, 28, 29, 30 ] & 30
16 & 40 & 54 & 2 & 51 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 4), ($\textrm{M}_{12}$, 5), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 1)] & [ 6, 10, 12, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 48 & 48 & 0 & 31 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(9)$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), ($B_{2}(3)$, 5), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 2), ($C_{3}(2)$, 5), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 5), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 5), ($A_{4}(2)$, 2), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 10, 11, 12, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 48 & 48 & 1 & 31 & Yes & No & 2& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 10), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 6), ($\textrm{Alt}_{11}$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 2)] & [ 3, 4, 5, 9, 11, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 48 & 54 & 0 & 43 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 12, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 48 & 54 & 2 & 43 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 5), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 54 & 54 & 0 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), (${}^2A_{4}(4)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 20, 21, 22, 24, 25, 26, 27, 29, 30 ] & 30
16 & 54 & 54 & 2 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 6), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 5), ($\textrm{Alt}_{11}$, 6), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
16 & 54 & 54 & 8 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 7), (${}^2A_{4}(4)$, 3), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 12, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 40 & 40 & 0 & 53 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 8), (${}^2A_{3}(9)$, 1), (${}^2A_{4}(4)$, 3)] & [ 5, 7, 10, 15, 17, 20, 21, 22, 24, 25, 26, 27, 30 ] & 30
18 & 40 & 48 & 0 & 45 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 7), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 10), ($\textrm{Alt}_{11}$, 5)] & [ 3, 5, 6, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 40 & 54 & 0 & 57 & ? & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 4), ($A_{3}(3)$, 14), (${}^2A_{4}(4)$, 3)] & [ 3, 5, 10, 12, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 40 & 54 & 2 & 57 & Yes & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 4)] & [ 3, 5, 9, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 48 & 48 & 0 & 37 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 3), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 9), ($\textrm{Alt}_{11}$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 48 & 54 & 0 & 49 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 2), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 8), ($\textrm{Alt}_{11}$, 4), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 48 & 54 & 2 & 49 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 54 & 54 & 0 & 61 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), (${}^2A_{4}(4)$, 2), ($A_{2}(9)$, 3)] & [ 3, 9, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 54 & 54 & 2 & 61 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 10), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 9), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 15, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 & 54 & 54 & 8 & 61 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 8), ($A_{3}(3)$, 10), (${}^2A_{4}(4)$, 4), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 40 & 40 & 0 & 55 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 2), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 2), ($C_{2}(4)$, 2), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 2), ($B_{2}(5)$, 10), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 4), ($\textrm{Alt}_{11}$, 3)] & [ 5, 6, 7, 10, 11, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 40 & 48 & 0 & 47 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 3), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 4), ($C_{3}(2)$, 3), ($B_{2}(5)$, 12), ($A_{3}(3)$, 2), ($A_{4}(2)$, 5), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 4)] & [ 3, 5, 6, 7, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 40 & 54 & 0 & 59 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 4), ($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 4), ($\textrm{Alt}_{11}$, 12)] & [ 3, 5, 6, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 40 & 54 & 2 & 59 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 7), (${}^2A_{3}(9)$, 6), ($A_{3}(3)$, 7), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 6)] & [ 3, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 48 & 48 & 0 & 39 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 4), ($B_{2}(3)$, 3), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 2), ($\textrm{J}_{2}$, 2), ($C_{3}(2)$, 11), ($\textrm{Alt}_{10}$, 1), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 3), ($B_{2}(5)$, 7), ($A_{3}(3)$, 1), ($A_{4}(2)$, 2), (${}^2A_{4}(4)$, 13), ($\textrm{Alt}_{11}$, 1), ($\textrm{HS}_{}$, 2)] & [ 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 48 & 48 & 1 & 39 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 1), ($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 17), (${}^2A_{3}(9)$, 8), ($B_{2}(5)$, 5), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 8), ($\textrm{Alt}_{11}$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 48 & 54 & 0 & 51 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 3), ($\textrm{Alt}_{10}$, 5), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 2), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 4)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 48 & 54 & 2 & 51 & ? & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 3), ($C_{3}(2)$, 3), ($\textrm{Alt}_{10}$, 5), (${}^2A_{3}(9)$, 5), ($A_{3}(3)$, 10), (${}^2A_{4}(4)$, 12), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 54 & 54 & 0 & 63 & ? & No & 3& []& [($\textrm{Alt}_{9}$, 6), ($\textrm{Alt}_{10}$, 2), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 8), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 54 & 54 & 2 & 63 & ? & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 9), ($C_{3}(2)$, 6), ($\textrm{Alt}_{10}$, 22), (${}^2A_{3}(9)$, 8), ($A_{3}(3)$, 26), (${}^2A_{4}(4)$, 12), ($\textrm{Alt}_{11}$, 12)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 & 54 & 54 & 8 & 63 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 14), ($\textrm{Alt}_{10}$, 1), (${}^2A_{4}(4)$, 9), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
26 & 40 & 40 & 0 & 55 & Yes & No & 0& [L_2(13^2)]& [($A_{3}(3)$, 3)] & [ 5, 20, 21, 27, 28 ] & 30
26 & 40 & 48 & 0 & 47 & ? & ? & 0& [L_2(13^2)]& [(${}^2F_4(2)'$, 1)] & [ ] & 30
26 & 40 & 54 & 0 & 59 & Yes & ? & 0& []& [($A_{3}(3)$, 3)] & [ 30 ] & 30
26 & 40 & 54 & 2 & 59 & ? & ? & 0& []& [] & [ 15 ] & 30
26 & 48 & 48 & 0 & 39 & Yes & No & 2& []& [($G_{2}(3)$, 1)] & [ 3, 4, 14, 28 ] & 30
26 & 48 & 48 & 1 & 39 & Yes & No & 2& [L_2(13)]& [($G_{2}(3)$, 4), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28, 29, 30 ] & 30
26 & 48 & 54 & 0 & 51 & ? & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 13, 26, 27, 28 ] & 30
26 & 48 & 54 & 2 & 51 & ? & No & 2& []& [($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 13, 26, 27, 28, 29 ] & 30
26 & 54 & 54 & 0 & 63 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13, 26, 27, 30 ] & 30
26 & 54 & 54 & 2 & 63 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($A_{3}(3)$, 20), ($A_{2}(9)$, 3)] & [ 3, 13, 16, 19, 22, 25, 26, 27, 28, 29, 30 ] & 30
26 & 54 & 54 & 8 & 63 & Yes & ? & 2& []& [($A_{2}(3)$, 2), ($A_{3}(3)$, 6), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 30
1 order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
2 14 & 40 & 40 & 0 & 47 & Yes & No & 0& [L_2(7^2)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 5), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 3), ($A_{2}(9)$, 1)] & [ 5, 10, 11, 20, 21, 30 ] & 30
3 14 & 40 & 48 & 0 & 39 & ? & ? & 0& [L_2(7^2)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 7, 10 ] & 30
4 14 & 40 & 54 & 0 & 51 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2)] & [ 21, 25 ] & 30
5 14 & 40 & 54 & 2 & 51 & Yes & ? & 0& []& [($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2)] & [ 20, 21, 22, 25, 27, 30 ] & 30
6 14 & 48 & 48 & 0 & 31 & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 2), (${}^2A_{3}(9)$, 1), ($G_{2}(3)$, 2)] & [ 3, 7, 8, 15, 16, 22, 23, 24, 27, 28, 29, 30 ] & 30
7 14 & 48 & 48 & 1 & 31 & ? & No & 2& []& [] & [ 3, 4 ] & 30
8 14 & 48 & 54 & 0 & 43 & ? & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 18 ] & 30
9 14 & 48 & 54 & 2 & 43 & Yes & No & 2& []& [($C_{3}(2)$, 3), (${}^2A_{3}(9)$, 1), ($G_{2}(3)$, 1)] & [ 3, 14, 15, 21, 22, 28, 29, 30 ] & 30
10 14 & 54 & 54 & 0 & 55 & ? & No & 2& []& [] & [ 3, 21, 28, 29 ] & 30
11 14 & 54 & 54 & 2 & 55 & Yes & No & 2& []& [($\textrm{Alt}_{10}$, 6), (${}^2A_{3}(9)$, 2)] & [ 3, 10, 13, 14, 17, 19, 20, 21, 23, 24, 27, 28, 29, 30 ] & 30
12 14 & 54 & 54 & 8 & 55 & ? & No & 2& []& [] & [ 3, 18, 21, 27, 30 ] & 30
13 16 & 40 & 40 & 0 & 47 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{M}_{11}$, 4), ($B_{2}(3)$, 7), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 2), ($C_{2}(4)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 11), ($A_{3}(3)$, 2), ($\textrm{Alt}_{11}$, 6)] & [ 5, 6, 10, 11, 15, 16, 17, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
14 16 & 40 & 48 & 0 & 39 & ? & No & 0& [L_2(3^2)]& [($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 1), ($\textrm{J}_{2}$, 2), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 5), ($A_{3}(3)$, 2), ($A_{4}(2)$, 3), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 11, 16, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30 ] & 30
15 16 & 40 & 54 & 0 & 51 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 5), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 1)] & [ 6, 12, 17, 18, 21, 23, 24, 26, 27, 28, 29, 30 ] & 30
16 16 & 40 & 54 & 2 & 51 & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 4), ($\textrm{M}_{12}$, 5), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 1)] & [ 6, 10, 12, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
17 16 & 48 & 48 & 0 & 31 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(9)$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), ($B_{2}(3)$, 5), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 2), ($C_{3}(2)$, 5), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 5), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 5), ($A_{4}(2)$, 2), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 10, 11, 12, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
18 16 & 48 & 48 & 1 & 31 & Yes & No & 2& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 10), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 6), ($\textrm{Alt}_{11}$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 2)] & [ 3, 4, 5, 9, 11, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
19 16 & 48 & 54 & 0 & 43 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 1), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 12, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
20 16 & 48 & 54 & 2 & 43 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 5), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
21 16 & 54 & 54 & 0 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), (${}^2A_{4}(4)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 20, 21, 22, 24, 25, 26, 27, 29, 30 ] & 30
22 16 & 54 & 54 & 2 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 6), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 5), ($\textrm{Alt}_{11}$, 6), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
23 16 & 54 & 54 & 8 & 55 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 7), (${}^2A_{4}(4)$, 3), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 12, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
24 18 & 40 & 40 & 0 & 53 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 8), (${}^2A_{3}(9)$, 1), (${}^2A_{4}(4)$, 3)] & [ 5, 7, 10, 15, 17, 20, 21, 22, 24, 25, 26, 27, 30 ] & 30
25 18 & 40 & 48 & 0 & 45 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 7), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 10), ($\textrm{Alt}_{11}$, 5)] & [ 3, 5, 6, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
26 18 & 40 & 54 & 0 & 57 & ? & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 4), ($A_{3}(3)$, 14), (${}^2A_{4}(4)$, 3)] & [ 3, 5, 10, 12, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
27 18 & 40 & 54 & 2 & 57 & Yes & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 4)] & [ 3, 5, 9, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
28 18 & 48 & 48 & 0 & 37 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 3), ($\textrm{Alt}_{10}$, 3), (${}^2A_{3}(9)$, 4), ($A_{3}(3)$, 9), ($\textrm{Alt}_{11}$, 2), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
29 18 & 48 & 54 & 0 & 49 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 2), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 8), ($\textrm{Alt}_{11}$, 4), ($A_{2}(9)$, 3)] & [ 3, 4, 10, 11, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
30 18 & 48 & 54 & 2 & 49 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 3), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
31 18 & 54 & 54 & 0 & 61 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), (${}^2A_{4}(4)$, 2), ($A_{2}(9)$, 3)] & [ 3, 9, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
32 18 & 54 & 54 & 2 & 61 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 10), (${}^2A_{3}(9)$, 3), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 9), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 15, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30 ] & 30
33 18 & 54 & 54 & 8 & 61 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 8), ($A_{3}(3)$, 10), (${}^2A_{4}(4)$, 4), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
34 24 & 40 & 40 & 0 & 55 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 2), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 2), ($C_{2}(4)$, 2), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 2), ($B_{2}(5)$, 10), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 4), ($\textrm{Alt}_{11}$, 3)] & [ 5, 6, 7, 10, 11, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
35 24 & 40 & 48 & 0 & 47 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 3), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 4), ($C_{3}(2)$, 3), ($B_{2}(5)$, 12), ($A_{3}(3)$, 2), ($A_{4}(2)$, 5), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 4)] & [ 3, 5, 6, 7, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
36 24 & 40 & 54 & 0 & 59 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 4), ($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 2), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 4), ($\textrm{Alt}_{11}$, 12)] & [ 3, 5, 6, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
37 24 & 40 & 54 & 2 & 59 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 6), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 7), (${}^2A_{3}(9)$, 6), ($A_{3}(3)$, 7), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 6)] & [ 3, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
38 24 & 48 & 48 & 0 & 39 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 4), ($B_{2}(3)$, 3), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 2), ($\textrm{J}_{2}$, 2), ($C_{3}(2)$, 11), ($\textrm{Alt}_{10}$, 1), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 3), ($B_{2}(5)$, 7), ($A_{3}(3)$, 1), ($A_{4}(2)$, 2), (${}^2A_{4}(4)$, 13), ($\textrm{Alt}_{11}$, 1), ($\textrm{HS}_{}$, 2)] & [ 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
39 24 & 48 & 48 & 1 & 39 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 1), ($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 17), (${}^2A_{3}(9)$, 8), ($B_{2}(5)$, 5), ($A_{3}(3)$, 3), (${}^2A_{4}(4)$, 8), ($\textrm{Alt}_{11}$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
40 24 & 48 & 54 & 0 & 51 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 3), ($\textrm{Alt}_{10}$, 5), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 2), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 4)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
41 24 & 48 & 54 & 2 & 51 & ? & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 3), ($C_{3}(2)$, 3), ($\textrm{Alt}_{10}$, 5), (${}^2A_{3}(9)$, 5), ($A_{3}(3)$, 10), (${}^2A_{4}(4)$, 12), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
42 24 & 54 & 54 & 0 & 63 & ? & No & 3& []& [($\textrm{Alt}_{9}$, 6), ($\textrm{Alt}_{10}$, 2), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 8), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
43 24 & 54 & 54 & 2 & 63 & ? & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 9), ($C_{3}(2)$, 6), ($\textrm{Alt}_{10}$, 22), (${}^2A_{3}(9)$, 8), ($A_{3}(3)$, 26), (${}^2A_{4}(4)$, 12), ($\textrm{Alt}_{11}$, 12)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
44 24 & 54 & 54 & 8 & 63 & Yes & No & 3& []& [($B_{2}(3)$, 4), ($\textrm{Alt}_{9}$, 14), ($\textrm{Alt}_{10}$, 1), (${}^2A_{4}(4)$, 9), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] & 30
45 26 & 40 & 40 & 0 & 55 & Yes & No & 0& [L_2(13^2)]& [($A_{3}(3)$, 3)] & [ 5, 20, 21, 27, 28 ] & 30
46 26 & 40 & 48 & 0 & 47 & ? & ? & 0& [L_2(13^2)]& [(${}^2F_4(2)'$, 1)] & [ ] & 30
47 26 & 40 & 54 & 0 & 59 & Yes & ? & 0& []& [($A_{3}(3)$, 3)] & [ 30 ] & 30
48 26 & 40 & 54 & 2 & 59 & ? & ? & 0& []& [] & [ 15 ] & 30
49 26 & 48 & 48 & 0 & 39 & Yes & No & 2& []& [($G_{2}(3)$, 1)] & [ 3, 4, 14, 28 ] & 30
50 26 & 48 & 48 & 1 & 39 & Yes & No & 2& [L_2(13)]& [($G_{2}(3)$, 4), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28, 29, 30 ] & 30
51 26 & 48 & 54 & 0 & 51 & ? & ? & 2& []& [($G_{2}(3)$, 1)] & [ 3, 13, 26, 27, 28 ] & 30
52 26 & 48 & 54 & 2 & 51 & ? & No & 2& []& [($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 13, 26, 27, 28, 29 ] & 30
53 26 & 54 & 54 & 0 & 63 & ? & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13, 26, 27, 30 ] & 30
54 26 & 54 & 54 & 2 & 63 & Yes & No & 2& []& [($A_{2}(3)$, 2), ($A_{3}(3)$, 20), ($A_{2}(9)$, 3)] & [ 3, 13, 16, 19, 22, 25, 26, 27, 28, 29, 30 ] & 30
55 26 & 54 & 54 & 8 & 63 & Yes & ? & 2& []& [($A_{2}(3)$, 2), ($A_{3}(3)$, 6), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 30

18
data/table_4_4_4.csv Normal file
View File

@ -0,0 +1,18 @@
order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
40 & 40 & 40 & 0 & 57 & Yes & No & 0& [L_2(\infty^4), L_2(\infty^4), L_2(\infty^4), L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 1), ($B_{2}(3)$, 18), ($\textrm{M}_{12}$, 7), (${}^2A_{2}(25)$, 2), ($\textrm{J}_{1}$, 4), ($A_{2}(5)$, 2), ($\textrm{J}_{2}$, 8), ($C_{2}(4)$, 21), ($\textrm{Alt}_{10}$, 15), (${}^2A_{3}(9)$, 12), ($B_{2}(5)$, 90), ($A_{3}(3)$, 7), ($\textrm{HS}_{}$, 12)] & [ 6, 7, 10, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
40 & 40 & 48 & 0 & 49 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{11}$, 4), ($B_{2}(3)$, 8), (${}^2A_{2}(25)$, 1), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 2), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 16), ($A_{3}(3)$, 2), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 10), ($\textrm{Alt}_{11}$, 7)] & [ 5, 6, 7, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
40 & 40 & 54 & 0 & 61 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 8), (${}^2A_{3}(9)$, 15), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 7)] & [ 5, 7, 10, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
40 & 48 & 48 & 0 & 41 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 18), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 6), ($C_{2}(4)$, 4), ($C_{3}(2)$, 6), (${}^2A_{3}(9)$, 10), ($B_{2}(5)$, 20), ($A_{3}(3)$, 15), ($A_{4}(2)$, 8), (${}^2A_{4}(4)$, 15), ($\textrm{Alt}_{11}$, 9)] & [ 3, 5, 6, 7, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
40 & 48 & 54 & 0 & 53 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 11), ($\textrm{M}_{12}$, 7), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 7), (${}^2A_{3}(9)$, 14), ($A_{3}(3)$, 16), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 7)] & [ 3, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
40 & 48 & 54 & 2 & 53 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 17), ($\textrm{M}_{12}$, 7), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 20), ($A_{3}(3)$, 22), (${}^2A_{4}(4)$, 24), ($\textrm{Alt}_{11}$, 15)] & [ 3, 5, 6, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
40 & 54 & 54 & 0 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 8), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 9), ($A_{3}(3)$, 17), (${}^2A_{4}(4)$, 7)] & [ 3, 5, 9, 10, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
40 & 54 & 54 & 2 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 12), ($\textrm{M}_{12}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 16), (${}^2A_{3}(9)$, 14), ($A_{3}(3)$, 26), (${}^2A_{4}(4)$, 40), ($\textrm{Alt}_{11}$, 10)] & [ 3, 5, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
40 & 54 & 54 & 8 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 8), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 12), (${}^2A_{3}(9)$, 12), ($A_{3}(3)$, 8), (${}^2A_{4}(4)$, 16)] & [ 3, 5, 9, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
48 & 48 & 48 & 0 & 33 & ? & No & 3& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($B_{2}(3)$, 27), ($\textrm{Alt}_{9}$, 3), ($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 39), (${}^2A_{3}(9)$, 21), ($B_{2}(5)$, 9), ($A_{3}(3)$, 33), (${}^2A_{4}(4)$, 60), ($\textrm{Alt}_{11}$, 3), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 3)] & [ 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
48 & 48 & 48 & 1 & 33 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), (${}^2A_{2}(9)$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 6), ($B_{2}(3)$, 24), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 3), ($\textrm{J}_{2}$, 4), ($C_{3}(2)$, 27), ($\textrm{Alt}_{10}$, 3), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 15), ($B_{2}(5)$, 19), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 30), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 63), ($\textrm{Alt}_{11}$, 3), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 3)] & [ 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
48 & 48 & 54 & 0 & 45 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 19), ($\textrm{Alt}_{9}$, 3), ($C_{3}(2)$, 3), ($\textrm{Alt}_{10}$, 6), (${}^2A_{3}(9)$, 17), ($A_{3}(3)$, 28), (${}^2A_{4}(4)$, 40), ($\textrm{Alt}_{11}$, 6), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
48 & 54 & 54 & 0 & 57 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 6), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 9), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 11), (${}^2A_{4}(4)$, 25), ($\textrm{Alt}_{11}$, 4), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
48 & 54 & 54 & 2 & 57 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 10), ($\textrm{Alt}_{9}$, 9), ($C_{3}(2)$, 6), ($\textrm{Alt}_{10}$, 22), (${}^2A_{3}(9)$, 14), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 36), (${}^2A_{4}(4)$, 28), ($\textrm{Alt}_{11}$, 20), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
48 & 54 & 54 & 8 & 57 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 18), ($\textrm{Alt}_{9}$, 14), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 15), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 19), (${}^2A_{4}(4)$, 52), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
54 & 54 & 54 & 0 & 69 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 6), (${}^2A_{4}(4)$, 10), ($A_{2}(9)$, 3)] & [ 3, 9, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
54 & 54 & 54 & 2 & 69 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 24), (${}^2A_{3}(9)$, 9), ($A_{3}(3)$, 13), (${}^2A_{4}(4)$, 41), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
1 order1 & order2 & order3 & index & presentation length & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
2 40 & 40 & 40 & 0 & 57 & Yes & No & 0& [L_2(\infty^4), L_2(\infty^4), L_2(\infty^4), L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 1), ($B_{2}(3)$, 18), ($\textrm{M}_{12}$, 7), (${}^2A_{2}(25)$, 2), ($\textrm{J}_{1}$, 4), ($A_{2}(5)$, 2), ($\textrm{J}_{2}$, 8), ($C_{2}(4)$, 21), ($\textrm{Alt}_{10}$, 15), (${}^2A_{3}(9)$, 12), ($B_{2}(5)$, 90), ($A_{3}(3)$, 7), ($\textrm{HS}_{}$, 12)] & [ 6, 7, 10, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
3 40 & 40 & 48 & 0 & 49 & Yes & No & 0& [L_2(\infty^4)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{11}$, 4), ($B_{2}(3)$, 8), (${}^2A_{2}(25)$, 1), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 4), ($C_{2}(4)$, 2), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 4), ($B_{2}(5)$, 16), ($A_{3}(3)$, 2), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 10), ($\textrm{Alt}_{11}$, 7)] & [ 5, 6, 7, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
4 40 & 40 & 54 & 0 & 61 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 5), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{10}$, 8), (${}^2A_{3}(9)$, 15), ($A_{3}(3)$, 4), (${}^2A_{4}(4)$, 7)] & [ 5, 7, 10, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
5 40 & 48 & 48 & 0 & 41 & Yes & No & 1& [L_2(3^2), L_2(3^2)]& [($\textrm{Alt}_{7}$, 2), ($\textrm{M}_{11}$, 1), ($B_{2}(3)$, 18), ($\textrm{M}_{22}$, 2), ($\textrm{J}_{2}$, 6), ($C_{2}(4)$, 4), ($C_{3}(2)$, 6), (${}^2A_{3}(9)$, 10), ($B_{2}(5)$, 20), ($A_{3}(3)$, 15), ($A_{4}(2)$, 8), (${}^2A_{4}(4)$, 15), ($\textrm{Alt}_{11}$, 9)] & [ 3, 5, 6, 7, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
6 40 & 48 & 54 & 0 & 53 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 11), ($\textrm{M}_{12}$, 7), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 7), (${}^2A_{3}(9)$, 14), ($A_{3}(3)$, 16), (${}^2A_{4}(4)$, 3), ($\textrm{Alt}_{11}$, 7)] & [ 3, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
7 40 & 48 & 54 & 2 & 53 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 17), ($\textrm{M}_{12}$, 7), ($C_{3}(2)$, 2), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 20), ($A_{3}(3)$, 22), (${}^2A_{4}(4)$, 24), ($\textrm{Alt}_{11}$, 15)] & [ 3, 5, 6, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
8 40 & 54 & 54 & 0 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 8), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{3}(9)$, 9), ($A_{3}(3)$, 17), (${}^2A_{4}(4)$, 7)] & [ 3, 5, 9, 10, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
9 40 & 54 & 54 & 2 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 12), ($\textrm{M}_{12}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 16), (${}^2A_{3}(9)$, 14), ($A_{3}(3)$, 26), (${}^2A_{4}(4)$, 40), ($\textrm{Alt}_{11}$, 10)] & [ 3, 5, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
10 40 & 54 & 54 & 8 & 65 & Yes & No & 1& []& [($B_{2}(3)$, 8), ($\textrm{M}_{12}$, 2), ($\textrm{Alt}_{9}$, 12), (${}^2A_{3}(9)$, 12), ($A_{3}(3)$, 8), (${}^2A_{4}(4)$, 16)] & [ 3, 5, 9, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
11 48 & 48 & 48 & 0 & 33 & ? & No & 3& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), ($B_{2}(3)$, 27), ($\textrm{Alt}_{9}$, 3), ($\textrm{M}_{22}$, 1), ($C_{3}(2)$, 39), (${}^2A_{3}(9)$, 21), ($B_{2}(5)$, 9), ($A_{3}(3)$, 33), (${}^2A_{4}(4)$, 60), ($\textrm{Alt}_{11}$, 3), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 3)] & [ 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
12 48 & 48 & 48 & 1 & 33 & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), (${}^2A_{2}(9)$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 6), ($B_{2}(3)$, 24), ($\textrm{M}_{12}$, 1), (${}^2A_{2}(25)$, 3), ($\textrm{J}_{2}$, 4), ($C_{3}(2)$, 27), ($\textrm{Alt}_{10}$, 3), ($A_{2}(7)$, 1), (${}^2A_{3}(9)$, 15), ($B_{2}(5)$, 19), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 30), ($A_{4}(2)$, 4), (${}^2A_{4}(4)$, 63), ($\textrm{Alt}_{11}$, 3), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2), ($\textrm{HS}_{}$, 3)] & [ 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
13 48 & 48 & 54 & 0 & 45 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 19), ($\textrm{Alt}_{9}$, 3), ($C_{3}(2)$, 3), ($\textrm{Alt}_{10}$, 6), (${}^2A_{3}(9)$, 17), ($A_{3}(3)$, 28), (${}^2A_{4}(4)$, 40), ($\textrm{Alt}_{11}$, 6), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
14 48 & 54 & 54 & 0 & 57 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 6), ($\textrm{Alt}_{10}$, 2), (${}^2A_{3}(9)$, 9), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 11), (${}^2A_{4}(4)$, 25), ($\textrm{Alt}_{11}$, 4), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
15 48 & 54 & 54 & 2 & 57 & Yes & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 10), ($\textrm{Alt}_{9}$, 9), ($C_{3}(2)$, 6), ($\textrm{Alt}_{10}$, 22), (${}^2A_{3}(9)$, 14), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 36), (${}^2A_{4}(4)$, 28), ($\textrm{Alt}_{11}$, 20), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
16 48 & 54 & 54 & 8 & 57 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 18), ($\textrm{Alt}_{9}$, 14), ($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 15), (${}^2A_{2}(64)$, 2), ($A_{3}(3)$, 19), (${}^2A_{4}(4)$, 52), ($\textrm{Alt}_{11}$, 1), ($A_{2}(9)$, 3)] & [ 3, 4, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
17 54 & 54 & 54 & 0 & 69 & ? & No & 3& []& [($A_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 6), (${}^2A_{4}(4)$, 10), ($A_{2}(9)$, 3)] & [ 3, 9, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40
18 54 & 54 & 54 & 2 & 69 & ? & No & 3& []& [($A_{2}(3)$, 2), ($B_{2}(3)$, 8), ($\textrm{Alt}_{9}$, 24), (${}^2A_{3}(9)$, 9), ($A_{3}(3)$, 13), (${}^2A_{4}(4)$, 41), ($A_{2}(9)$, 3)] & [ 3, 9, 12, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] & 40

15881
data/triangle_groups.json Normal file

File diff suppressed because it is too large Load Diff

125
docs/create_table.js Normal file
View File

@ -0,0 +1,125 @@
function columnName(key) {
let words = key.split("_");
for (let i = 0; i < words.length; i++) {
words[i][0] = words[i][0].toUpperCase();
}
return words.join(" ");
}
function generateTableHead(table, keys) {
let thead = table.createTHead();
let row = thead.insertRow();
for (let key of keys) {
let th = document.createElement("th");
let text = document.createTextNode(columnName(key));
th.appendChild(text);
row.appendChild(th);
}
}
function createDetails(object, summary_text = "show…", open = false) {
let details = document.createElement("details");
let summary = document.createElement("summary");
summary.textContent = summary_text;
details.appendChild(summary);
details.appendChild(object);
return details;
}
function createListFromJson(json, ismath = false) {
let list = document.createElement("ul");
for (let [k, v] of Object.entries(json)) {
let item = document.createElement("li");
if (ismath) {
let math = createMathSpan(k + " : " + v);
item.appendChild(math);
} else {
item.innerText = k + " : " + v;
}
list.appendChild(item);
}
return list
}
function createSpansFromArray(arr, ismath = false) {
let list = document.createElement("span");
if (arr == null) {
return list;
}
for (let i = 0; i < arr.length; i++) {
let item;
if (ismath) {
item = createMathSpan(arr[i]);
} else {
item = document.createElement("span");
item.innerText = String(arr[i]);
}
list.appendChild(item);
if (i != arr.length - 1) {
let comma = document.createElement("span");
comma.innerText = ", ";
list.appendChild(comma);
}
}
return list;
}
function fillRow(row, group_json) {
for (let key of Object.keys(group_json)) {
let cell = row.insertCell();
let cell_content;
let val = group_json[key];
switch (key) {
case "name":
cell_content = createMathSpan(val);
break;
case "quotients":
cell_content = createDetails(createListFromJson(val, ismath = true));
break;
case "quotients_utf8":
cell_content = createDetails(createListFromJson(val));
break;
case "quotients_plain":
cell_content = createListFromJson(val);
break;
case "generators":
cell_content = createSpansFromArray(val,);
break;
case "relations":
cell_content = createDetails(createSpansFromArray(val, ismath = true));
break;
case "witnesses_non_hyperbolictity":
cell_content = createSpansFromArray(val, ismath = true);
break;
case "L2_quotients":
cell_content = createSpansFromArray(val, ismath = true);
break;
case "alternating_quotients":
cell_content = createDetails(createSpansFromArray(val));
break;
default:
cell_content = document.createTextNode(val);
}
cell.appendChild(cell_content);
}
return row
}
function fillTableFromJson(table, json) {
let keys = Object.keys(json[0]);
for (let group of json) {
let row = table.insertRow();
fillRow(row, group);
}
generateTableHead(table, keys);
}
async function setup_table(data) {
let table = document.querySelector("table");
fillTableFromJson(table, data);
console.log("created table of length " + table.rows.length);
return table;
}

26
docs/details.css Normal file
View File

@ -0,0 +1,26 @@
details {
border: 1px solid #aaa;
border-radius: 4px;
padding: .4em .4em 0;
align-content: center;
}
summary {
font-weight: bold;
margin: -0.4em -.2em 0;
padding: .0em;
display: revert;
}
details[open] {
padding: .5em;
}
details[open] summary {
border-bottom: 1px solid #aaa;
margin-bottom: .5em;
}
.math-text {
display: none;
}

34
docs/filter_table.js Normal file
View File

@ -0,0 +1,34 @@
const filtersConfig = {
base_path: 'tablefilter/',
auto_filter: {
delay: 400
},
filters_row_index: 1,
highlight_keywords: true,
responsive: true,
state: true,
sticky_headers: true,
// popup_filters: true,
no_results_message: true,
alternate_rows: true,
mark_active_columns: true,
rows_counter: true,
btn_reset: true,
status_bar: true,
msg_filter: 'Filtering...',
extensions: [{
name: 'colsVisibility',
at_start: [1,3,5,6,7,8,18,19,20,21],
text: 'Hidden Columns: ',
enable_tick_all: true
}, {
name: 'sort'
}]
};
async function setup_filter(table) {
console.log("filtered table of length " + table.rows.length);
const filter = new TableFilter(table, filtersConfig);
filter.init();
return filter;
}

16
docs/http_server.py Normal file
View File

@ -0,0 +1,16 @@
#!/usr/bin/env python3
# encoding: utf-8
"""Use instead of `python3 -m http.server` when you need CORS"""
from http.server import HTTPServer, SimpleHTTPRequestHandler
class CORSRequestHandler(SimpleHTTPRequestHandler):
def end_headers(self):
self.send_header('Access-Control-Allow-Origin', '*')
self.send_header('Access-Control-Allow-Methods', 'GET')
self.send_header('Cache-Control', 'no-store, no-cache, must-revalidate')
return super(CORSRequestHandler, self).end_headers()
httpd = HTTPServer(('localhost', 8003), CORSRequestHandler)
httpd.serve_forever()

50
docs/index.html Normal file
View File

@ -0,0 +1,50 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<title>Generalized Triangle Groups</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<link rel="stylesheet" href="details.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.15.2/dist/katex.min.css"
integrity="sha384-MlJdn/WNKDGXveldHDdyRP1R4CTHr3FeuDNfhsLPYrq2t0UBkUdK2jyTnXPEK1NQ" crossorigin="anonymous">
<!-- The loading of KaTeX is deferred to speed up page rendering -->
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.15.2/dist/katex.min.js"
integrity="sha384-VQ8d8WVFw0yHhCk5E8I86oOhv48xLpnDZx5T9GogA/Y84DcCKWXDmSDfn13bzFZY"
crossorigin="anonymous"></script>
<!-- To automatically render math in text elements, include the auto-render extension: -->
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.15.2/dist/contrib/auto-render.min.js"
integrity="sha384-+XBljXPPiv+OzfbB3cVmLHf4hdUFHlWNZN5spNQ7rmHTXpd7WvJum6fIACpNNfIR" crossorigin="anonymous"
onload="renderMathInElement(document.body);"></script>
</head>
<body>
<div style="padding-left: 1%;">
<h3>
Generalized Triangle Groups of <a href="https://arxiv.org/abs/2011.09276">2011.09276</a>
</h3>
by Pierre-Emmanuel Caprace, Marston Conder, Marek Kaluba and Stefan Witzel.
<div class="form-check">
<input class="form-check-input" type="checkbox" value="" id="renderWithKatex">
<label class="form-check-label" for="renderWithKatex">
Render with KaTeX
</label>
</div>
<div>
<table id='GeneralizedTriangleGroups' border=0 class="table"></table>
</div>
</div>
</body>
<script type="text/javascript" src="tablefilter/tablefilter.js"></script>
<script type="text/javascript" src="math_render.js"></script>
<script type="text/javascript" src="create_table.js"></script>
<script type="text/javascript" src="filter_table.js"></script>
<script type="text/javascript" src="main.js"></script>
</html>

15
docs/main.js Normal file
View File

@ -0,0 +1,15 @@
const groups_url = new URL("https://raw.githubusercontent.com/kalmarek/SmallHyperbolic/mk/json/data/triangle_groups.json")
async function fetch_json(url) {
try {
let response = await fetch(url);
let json = await response.json();
return json;
} catch (err) {
console.log("Error while fetching json:" + err);
}
}
let table = fetch_json(groups_url)
.then(setup_table)
.then(setup_filter)
;

55
docs/math_render.js Normal file
View File

@ -0,0 +1,55 @@
function prepareTextForKatex(string) {
return string.replace(/ /g, "")
.replace(/\*/g, "")
.replace(/\^-1/g, "^{-1}")
.replace(/inf/g, "\\infty");
}
function createMathSpan(content) {
let item = document.createElement("span");
item.className = "math";
let math_text = document.createElement("span");
let math_tex = document.createElement("span");
math_text.className = "math-text";
math_text.innerText = content.toString().replace(/\*/g, "").replace(/ /g, "")
math_tex.className = "math-tex";
katex.render(prepareTextForKatex(math_text.innerText), math_tex);
item.appendChild(math_text);
item.appendChild(math_tex);
return item;
}
function toggleKaTeX(elt, toggle) {
let display_text = toggle ? "none" : "revert";
let display_tex = toggle ? "revert" : "none";
for (let child of elt.childNodes) {
switch (child.className) {
case "math-text":
child.style.display = display_text;
break;
case "math-tex":
child.style.display = display_tex;
break;
default:
// nothing
}
}
}
let math_objects = document.getElementsByClassName("math");
let katex_switch = document.getElementById("renderWithKatex");
katex_switch.checked = true;
katex_switch.addEventListener(
"change",
function () {
let toggle = this.checked;
for (let element of math_objects) {
toggleKaTeX(element, toggle);
}
}
);

View File

@ -0,0 +1 @@
span.colVisSpan{text-align:left;}span.colVisSpan a.colVis{display:inline-block;padding:7px 5px 0;font-size:inherit;font-weight:inherit;vertical-align:top}div.colVisCont{position:relative;background:#fff;-webkit-box-shadow:3px 3px 2px #888;-moz-box-shadow:3px 3px 2px #888;box-shadow:3px 3px 2px #888;position:absolute;display:none;border:1px solid #ccc;height:auto;width:250px;background-color:#fff;margin:35px 0 0 -100px;z-index:10000;padding:10px 10px 10px 10px;text-align:left;font-size:inherit;}div.colVisCont:after,div.colVisCont:before{bottom:100%;left:50%;border:solid transparent;content:" ";height:0;width:0;position:absolute;pointer-events:none}div.colVisCont:after{border-color:rgba(255,255,255,0);border-bottom-color:#fff;border-width:10px;margin-left:-10px}div.colVisCont:before{border-color:rgba(255,255,255,0);border-bottom-color:#ccc;border-width:12px;margin-left:-12px}div.colVisCont p{margin:6px auto 6px auto}div.colVisCont a.colVis{display:initial;font-weight:inherit}ul.cols_checklist{padding:0;margin:0;list-style-type:none;}ul.cols_checklist label{display:block}ul.cols_checklist input{vertical-align:middle;margin:2px 5px 2px 1px}li.cols_checklist_item{padding:4px;margin:0;}li.cols_checklist_item:hover{background-color:#335ea8;color:#fff}.cols_checklist_slc_item{background-color:#335ea8;color:#fff}

View File

@ -0,0 +1 @@
span.expClpFlt a.btnExpClpFlt{width:35px;height:35px;display:inline-block;}span.expClpFlt a.btnExpClpFlt:hover{background-color:#f4f4f4}span.expClpFlt img{padding:8px 11px 11px 11px}

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 360 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 325 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 B

View File

@ -0,0 +1 @@
table.TF{border-left:1px solid #ccc;border-top:none;border-right:none;border-bottom:none;}table.TF th{background:#ebecee url("images/bg_th.jpg") left top repeat-x;border-bottom:1px solid #d0d0d0;border-right:1px solid #d0d0d0;border-left:1px solid #fff;border-top:1px solid #fff;color:#333}table.TF td{border-bottom:1px dotted #999;padding:5px}.fltrow{background-color:#ebecee !important;}.fltrow th,.fltrow td{border-bottom:1px dotted #666 !important;padding:1px 3px 1px 3px !important}.flt,select.flt,select.flt_multi,.flt_s,.single_flt,.div_checklist{border:1px solid #999 !important}input.flt{width:99% !important}.inf{height:$min-height;background:#d7d7d7 url("images/bg_infDiv.jpg") 0 0 repeat-x !important}input.reset{background:transparent url("images/btn_eraser.gif") center center no-repeat !important}.helpBtn:hover{background-color:transparent}.nextPage{background:transparent url("images/btn_next_page.gif") center center no-repeat !important;}.nextPage:hover{background:transparent url("images/btn_over_next_page.gif") center center no-repeat !important}.previousPage{background:transparent url("images/btn_previous_page.gif") center center no-repeat !important;}.previousPage:hover{background:transparent url("images/btn_over_previous_page.gif") center center no-repeat !important}.firstPage{background:transparent url("images/btn_first_page.gif") center center no-repeat !important;}.firstPage:hover{background:transparent url("images/btn_over_first_page.gif") center center no-repeat !important}.lastPage{background:transparent url("images/btn_last_page.gif") center center no-repeat !important;}.lastPage:hover{background:transparent url("images/btn_over_last_page.gif") center center no-repeat !important}div.grd_Cont{background-color:#ebecee !important;border:1px solid #ccc !important;padding:0 !important;}div.grd_Cont .even{background-color:#fff}div.grd_Cont .odd{background-color:#d5d5d5}div.grd_headTblCont{background-color:#ebecee !important;border-bottom:none !important;}div.grd_headTblCont table{border-right:none !important}div.grd_tblCont table th,div.grd_headTblCont table th,div.grd_headTblCont table td{background:#ebecee url("images/bg_th.jpg") left top repeat-x !important;border-bottom:1px solid #d0d0d0 !important;border-right:1px solid #d0d0d0 !important;border-left:1px solid #fff !important;border-top:1px solid #fff !important}div.grd_tblCont table td{border-bottom:1px solid #999 !important}.grd_inf{background:#d7d7d7 url("images/bg_infDiv.jpg") 0 0 repeat-x !important;border-top:1px solid #d0d0d0 !important}.loader{border:1px solid #999}.defaultLoader{width:32px;height:32px;background:transparent url("images/img_loading.gif") 0 0 no-repeat !important}.even{background-color:#fff}.odd{background-color:#d5d5d5}span.expClpFlt a.btnExpClpFlt:hover{background-color:transparent !important}.activeHeader{background:#999 !important}

Binary file not shown.

After

Width:  |  Height:  |  Size: 303 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 326 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 356 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 332 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 331 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 187 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 440 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 640 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 427 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 393 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 395 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 290 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 201 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 441 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 469 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 300 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 303 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 928 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 KiB

View File

@ -0,0 +1 @@
table.TF{border-left:1px dotted #81963b;border-top:none;border-right:0;border-bottom:none;}table.TF th{background:#39424b url("images/bg_headers.jpg") left top repeat-x;border-bottom:0;border-right:1px dotted #d0d0d0;border-left:0;border-top:0;color:#fff}table.TF td{border-bottom:1px dotted #81963b;border-right:1px dotted #81963b;padding:5px}.fltrow{background-color:#81963b !important;}.fltrow th,.fltrow td{border-bottom:1px dotted #39424b !important;border-right:1px dotted #fff !important;border-left:0 !important;border-top:0 !important;padding:1px 3px 1px 3px !important}.flt,select.flt,select.flt_multi,.flt_s,.single_flt,.div_checklist{border:1px solid #687830 !important}input.flt{width:99% !important}.inf{background:#d8d8d8;height:$min-height}input.reset{width:53px;background:transparent url("images/btn_filter.png") center center no-repeat !important}.helpBtn:hover{background-color:transparent}.nextPage{background:transparent url("images/btn_next_page.gif") center center no-repeat !important}.previousPage{background:transparent url("images/btn_previous_page.gif") center center no-repeat !important}.firstPage{background:transparent url("images/btn_first_page.gif") center center no-repeat !important}.lastPage{background:transparent url("images/btn_last_page.gif") center center no-repeat !important}div.grd_Cont{background:#81963b url("images/bg_headers.jpg") left top repeat-x !important;border:1px solid #ccc !important;padding:0 1px 1px 1px !important;}div.grd_Cont .even{background-color:#bccd83}div.grd_Cont .odd{background-color:#fff}div.grd_headTblCont{background-color:#ebecee !important;border-bottom:none !important}div.grd_tblCont table{border-right:none !important;}div.grd_tblCont table td{border-bottom:1px dotted #81963b;border-right:1px dotted #81963b}div.grd_tblCont table th,div.grd_headTblCont table th{background:transparent url("images/bg_headers.jpg") 0 0 repeat-x !important;border-bottom:0 !important;border-right:1px dotted #d0d0d0 !important;border-left:0 !important;border-top:0 !important;padding:0 4px 0 4px !important;color:#fff !important;height:35px !important}div.grd_headTblCont table td{border-bottom:1px dotted #39424b !important;border-right:1px dotted #fff !important;border-left:0 !important;border-top:0 !important;background-color:#81963b !important;padding:1px 3px 1px 3px !important}.grd_inf{background-color:#d8d8d8;border-top:1px solid #d0d0d0 !important}.loader{border:0 !important;background:#81963b !important}.defaultLoader{width:32px;height:32px;background:transparent url("images/img_loading.gif") 0 0 no-repeat !important}.even{background-color:#bccd83}.odd{background-color:#fff}span.expClpFlt a.btnExpClpFlt:hover{background-color:transparent !important}.activeHeader{background:#81963b !important}

Binary file not shown.

After

Width:  |  Height:  |  Size: 554 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 601 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 847 B

View File

@ -0,0 +1 @@
table.TF{padding:0;color:#000;border-right:1px solid #a4bed4;border-top:1px solid #a4bed4;border-left:1px solid #a4bed4;border-bottom:0;}table.TF th{margin:0;color:inherit;background:#d1e5fe url("images/bg_skyblue.gif") 0 0 repeat-x;border-color:#fdfdfd #a4bed4 #a4bed4 #fdfdfd;border-width:1px;border-style:solid}table.TF td{margin:0;padding:5px;color:inherit;border-bottom:1px solid #a4bed4;border-left:0;border-top:0;border-right:0}.fltrow{background-color:#d1e5fe !important;}.fltrow th,.fltrow td{padding:1px 3px 1px 3px !important}.flt,select.flt,select.flt_multi,.flt_s,.single_flt,.div_checklist{border:1px solid #a4bed4 !important}input.flt{width:99% !important}.inf{background-color:#e3efff !important;border:1px solid #a4bed4;height:$min-height;color:#004a6f}div.tot,div.status{border-right:0 !important}.helpBtn:hover{background-color:transparent}input.reset{background:transparent url("images/icn_clear_filters.png") center center no-repeat !important}.nextPage{background:transparent url("images/btn_next_page.gif") center center no-repeat !important;border:1px solid transparent !important;}.nextPage:hover{background:#ffe4ab url("images/btn_next_page.gif") center center no-repeat !important;border:1px solid #ffb552 !important}.previousPage{background:transparent url("images/btn_prev_page.gif") center center no-repeat !important;border:1px solid transparent !important;}.previousPage:hover{background:#ffe4ab url("images/btn_prev_page.gif") center center no-repeat !important;border:1px solid #ffb552 !important}.firstPage{background:transparent url("images/btn_first_page.gif") center center no-repeat !important;border:1px solid transparent !important;}.firstPage:hover{background:#ffe4ab url("images/btn_first_page.gif") center center no-repeat !important;border:1px solid #ffb552 !important}.lastPage{background:transparent url("images/btn_last_page.gif") center center no-repeat !important;border:1px solid transparent !important;}.lastPage:hover{background:#ffe4ab url("images/btn_last_page.gif") center center no-repeat !important;border:1px solid #ffb552 !important}.activeHeader{background:#ffe4ab !important;border:1px solid #ffb552 !important;color:inherit !important}div.grd_Cont{background-color:#d9eaed !important;border:1px solid #9cc !important;padding:0 !important;}div.grd_Cont .even{background-color:#fff}div.grd_Cont .odd{background-color:#e3efff}div.grd_headTblCont{background-color:#d9eaed !important;border-bottom:none !important}div.grd_tblCont table{border-right:none !important}div.grd_tblCont table th,div.grd_headTblCont table th,div.grd_headTblCont table td{background:#d9eaed url("images/bg_skyblue.gif") left top repeat-x;border-bottom:1px solid #a4bed4;border-right:1px solid #a4bed4 !important;border-left:1px solid #fff !important;border-top:1px solid #fff !important}div.grd_tblCont table td{border-bottom:1px solid #a4bed4 !important;border-right:0 !important;border-left:0 !important;border-top:0 !important}.grd_inf{background-color:#cce2fe;color:#004a6f;border-top:1px solid #9cc !important;}.grd_inf a{text-decoration:none;font-weight:bold}.loader{background-color:#2d8eef;border:1px solid #cce2fe;border-radius:5px}.even{background-color:#fff}.odd{background-color:#e3efff}span.expClpFlt a.btnExpClpFlt:hover{background-color:transparent !important}.ezActiveRow{background-color:#ffdc61 !important;color:inherit}.ezSelectedRow{background-color:#ffe4ab !important;color:inherit}.ezActiveCell{background-color:#fff !important;color:#000 !important;font-weight:bold}.ezETSelectedCell{background-color:#fff !important;font-weight:bold;color:#000 !important}

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 601 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 847 B

View File

@ -0,0 +1 @@
table.TF{padding:0;color:inherit;border-right:1px solid transparent;border-top:1px solid transparent;border-left:1px solid transparent;border-bottom:0;}table.TF th{margin:0;color:inherit;background-color:transparent;border-color:transparent;border-width:1px;border-style:solid;}table.TF th:last-child{border-right:1px solid transparent}table.TF td{margin:0;padding:5px;color:inherit;border-bottom:1px solid transparent;border-left:0;border-top:0;border-right:0}.fltrow{background-color:transparent;}.fltrow th,.fltrow td{padding:1px 3px 1px 3px;border-bottom:1px solid transparent !important;}.fltrow th:last-child,.fltrow td:last-child{border-right:1px solid transparent}.flt,select.flt,select.flt_multi,.flt_s,.single_flt,.div_checklist{border:1px solid #a4bed4}input.flt{width:99% !important}.inf{background-color:transparent;border:1px solid transparent;height:$min-height;color:inherit}div.tot,div.status{border-right:0 !important}.helpBtn:hover{background-color:transparent}input.reset{background:transparent url("images/icn_clear_filters.png") center center no-repeat !important}.nextPage{background:transparent url("images/btn_next_page.gif") center center no-repeat !important;border:1px solid transparent !important;}.nextPage:hover{background:#f7f7f7 url("images/btn_next_page.gif") center center no-repeat !important;border:1px solid #f7f7f7 !important}.previousPage{background:transparent url("images/btn_prev_page.gif") center center no-repeat !important;border:1px solid transparent !important;}.previousPage:hover{background:#f7f7f7 url("images/btn_prev_page.gif") center center no-repeat !important;border:1px solid #f7f7f7 !important}.firstPage{background:transparent url("images/btn_first_page.gif") center center no-repeat !important;border:1px solid transparent !important;}.firstPage:hover{background:#f7f7f7 url("images/btn_first_page.gif") center center no-repeat !important;border:1px solid #f7f7f7 !important}.lastPage{background:transparent url("images/btn_last_page.gif") center center no-repeat !important;border:1px solid transparent !important;}.lastPage:hover{background:#f7f7f7 url("images/btn_last_page.gif") center center no-repeat !important;border:1px solid #f7f7f7 !important}.activeHeader{background:#f7f7f7 !important;border:1px solid transparent;color:inherit !important}div.grd_Cont{-webkit-box-shadow:0 0 0 0 rgba(50,50,50,0.75);-moz-box-shadow:0 0 0 0 rgba(50,50,50,0.75);box-shadow:0 0 0 0 rgba(50,50,50,0.75);background-color:transparent;border:1px solid transparent;padding:0 !important;}div.grd_Cont .even{background-color:transparent}div.grd_Cont .odd{background-color:#f7f7f7}div.grd_headTblCont{background-color:transparent;border-bottom:none !important}div.grd_tblCont table{border-right:none !important}div.grd_tblCont table th,div.grd_headTblCont table th,div.grd_headTblCont table td{background:transparent;border-bottom:1px solid transparent;border-right:1px solid transparent !important;border-left:1px solid transparent;border-top:1px solid transparent}div.grd_tblCont table td{border-bottom:1px solid transparent;border-right:0 !important;border-left:0 !important;border-top:0 !important}.grd_inf{background-color:transparent;color:inherit;border-top:1px solid transparent;}.grd_inf a{text-decoration:none;font-weight:bold}.loader{background-color:#f7f7f7;border:1px solid #f7f7f7;border-radius:5px;color:#000;text-shadow:none}.even{background-color:transparent}.odd{background-color:#f7f7f7}span.expClpFlt a.btnExpClpFlt:hover{background-color:transparent !important}.ezActiveRow{background-color:#ccc !important;color:inherit}.ezSelectedRow{background-color:#ccc !important;color:inherit}.ezActiveCell{background-color:transparent;color:inherit;font-weight:bold}.ezETSelectedCell{background-color:transparent;font-weight:bold;color:inherit}

Binary file not shown.

After

Width:  |  Height:  |  Size: 201 B

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -4,9 +4,12 @@ comm(a,b,args...) = comm(comm(a,b), args...)
const MAGMA_PRESENTATION_regex = r"Group<\s?(?<gens>.*)\s?\|\s?(?<rels>.*)\s?>"
const COMMUTATOR_regex = r"\((?<comm>[\w](\s?,\s?[\w]){1+})\)"
iscomment(line) = startswith(line, "//")
ismagma_presentation(line) = (m = match(MAGMA_PRESENTATION_regex, line); return !isnothing(m), m)
ismagma_presentation(line) =
(m = match(MAGMA_PRESENTATION_regex, line); return !isnothing(m), m)
function parse_magma_fpgroup(str::AbstractString)
function split_magma_presentation(str::AbstractString)
m = match(MAGMA_PRESENTATION_regex, str)
gens_str = strip.(split(m[:gens], ","))
rels_str = m[:rels]
@ -25,15 +28,25 @@ function parse_magma_fpgroup(str::AbstractString)
@assert in_function_call == 0
push!(split_indices, length(rels_str) + 1)
rels_strs = [strip.(String(rels_str[s+1:e-1])) for (s,e) in zip(split_indices, Iterators.rest(split_indices, 2))]
rels_strs = [
strip.(String(rels_str[s+1:e-1])) for
(s, e) in zip(split_indices, Iterators.rest(split_indices, 2))
]
# rels_strs = replace.(rels_strs, COMMUTATOR_regex=> s"comm(\g<comm>)")
# @show rels_strs
return gens_str, rels_strs
end
function parse_magma_fpgroup(str::AbstractString)
gens_str, rels_strs = split_magma_presentation(str)
return parse_magma_fpgroup(gens_str, rels_strs)
end
function parse_magma_fpgroup(gens_str::AbstractVector{<:AbstractString}, rels_str::AbstractVector{<:AbstractString})
function parse_magma_fpgroup(
gens_str::AbstractVector{<:AbstractString},
rels_str::AbstractVector{<:AbstractString},
)
gens_arr = Symbol.(gens_str)
gens_expr = Expr(:tuple, gens_arr...)
@ -43,7 +56,7 @@ function parse_magma_fpgroup(gens_str::AbstractVector{<:AbstractString}, rels_st
F = FreeGroup(String.(gens_str))
relations = @eval begin
$gens_expr = AbstractAlgebra.gens($F);
$gens_expr = AbstractAlgebra.gens($F)
$rels_expr
end