1
0
mirror of https://github.com/kalmarek/SmallHyperbolic synced 2024-11-23 23:40:28 +01:00

formatting

This commit is contained in:
kalmarek 2020-06-09 10:52:55 +02:00
parent c2740d58d3
commit 725293a037
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

View File

@ -44,7 +44,8 @@ SL2p = let
end end
end end
E, sizes = RamanujanGraphs.generate_balls([a,b, inv(a), inv(b)], radius=21); E, sizes =
RamanujanGraphs.generate_balls([a, b, inv(a), inv(b)], radius = 21)
@assert sizes[end] == RamanujanGraphs.order(SL₂{p}) @assert sizes[end] == RamanujanGraphs.order(SL₂{p})
E E
end end
@ -115,21 +116,40 @@ let α = RamanujanGraphs.generator(RamanujanGraphs.GF{p}(0)),
end end
end end
#
# using RamanujanGraphs.LightGraphs # using RamanujanGraphs.LightGraphs
# using Arpack # using Arpack
# #
# Γ, eigenvalues = let q = 109 # Γ, eigenvalues = let p = 109,
# a = RamanujanGraphs.PSL₂{q}([ 0 1 # a = PSL₂{p}([ 0 1; 108 11]),
# 108 11]) # b = PSL₂{p}([ 57 2; 52 42])
# b = RamanujanGraphs.PSL₂{q}([57 2
# 52 42])
# #
# S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]]) # S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]])
# #
# @info "Generating set S of $(eltype(S))" S # @info "Generating set S of $(eltype(S))" S
# @time Γ, verts, vlabels, elabels = RamanujanGraphs.cayley_graph((q^3 - q)÷2, S) # @time Γ, verts, vlabels, elabels =
# RamanujanGraphs.cayley_graph(RamanujanGraphs.order(PSL₂{p}), S)
#
# @assert all(LightGraphs.degree(Γ,i) == length(S) for i in vertices(Γ)) # @assert all(LightGraphs.degree(Γ,i) == length(S) for i in vertices(Γ))
# @assert LightGraphs.nv(Γ) == RamanujanGraphs.order(PSL₂{p})
# A = adjacency_matrix(Γ)
# @time eigenvalues, _ = eigs(A, nev=5)
# @show Γ eigenvalues
# Γ, eigenvalues
# end
#
# let p = 131,
# a = PSL₂{p}([-58 -24; -58 46]),
# b = PSL₂{p}([0 -3; 44 -12])
#
# S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]])
#
# @info "Generating set S of $(eltype(S))" S
# @time Γ, verts, vlabels, elabels =
# RamanujanGraphs.cayley_graph(RamanujanGraphs.order(PSL₂{p}), S)
#
# @assert all(LightGraphs.degree(Γ,i) == length(S) for i in vertices(Γ))
# @assert LightGraphs.nv(Γ) == RamanujanGraphs.order(PSL₂{p})
# A = adjacency_matrix(Γ) # A = adjacency_matrix(Γ)
# @time eigenvalues, _ = eigs(A, nev=5) # @time eigenvalues, _ = eigs(A, nev=5)
# @show Γ eigenvalues # @show Γ eigenvalues